Ciência habilitada por dados de espécimes

de Jesús Hernández-Hernández, M., J. A. Cruz, and C. Castañeda-Posadas. 2020. Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences 104: 102827. https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Evans, A., S. Janssens, and H. Jacquemyn. 2020. Impact of Climate Change on the Distribution of Four Closely Related Orchis (Orchidaceae) Species. Diversity 12: 312. https://doi.org/10.3390/d12080312

Long-term monitoring programs and population demographic models have shown that the population dynamics of orchids are to a large extent dependent on prevailing weather conditions, suggesting that the changes in climatic conditions can have far reaching effects on the population dynamics and hence t…

Li, F., and Y. Park. 2020. Habitat availability and environmental preference drive species range shifts in concordance with climate change. Diversity and Distributions 26: 1343–1356. https://doi.org/10.1111/ddi.13126

Aim: A progressive increase in air temperature is recognized as the most important mechanistic driver of species range shifts. However, only a few studies have simultaneously considered the influence of both extrinsic and intrinsic mechanistic drivers; there are still no studies on the roles of extr…

Speed, J. D. M., G. Austrheim, M. Bendiksby, A. L. Kolstad, and K. E. M. Vuorinen. 2020. Increasing Cervidae populations have variable impacts on habitat suitability for threatened forest plant and lichen species. Forest Ecology and Management 473: 118286. https://doi.org/10.1016/j.foreco.2020.118286

Large herbivores play a key role in temperate and boreal forest ecosystems. Cervidae (deer) population densities and community structure have undergone drastic changes in many parts of the world over the past decades, often with deer populations increasing. Many studies show impacts of Cervidae on m…

Liu, X., T. M. Blackburn, T. Song, X. Wang, C. Huang, and Y. Li. 2020. Animal invaders threaten protected areas worldwide. Nature Communications 11. https://doi.org/10.1038/s41467-020-16719-2

Protected areas are the cornerstone of biodiversity conservation. However, alien species invasion is an increasing threat to biodiversity, and the extent to which protected areas worldwide are resistant to incursions of alien species remains poorly understood. Here, we investigate establishment by 8…

Goodwin, Z. A., P. Muñoz-Rodríguez, D. J. Harris, T. Wells, J. R. I. Wood, D. Filer, and R. W. Scotland. 2020. How long does it take to discover a species? Systematics and Biodiversity 18: 784–793. https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Hochmair, H. H., R. H. Scheffrahn, M. Basille, and M. Boone. 2020. Evaluating the data quality of iNaturalist termite records P. Barden [ed.],. PLOS ONE 15: e0226534. https://doi.org/10.1371/journal.pone.0226534

Citizen science (CS) contributes to the knowledge about species distributions, which is a critical foundation in the studies of invasive species, biological conservation, and response to climatic change. In this study, we assessed the value of CS for termites worldwide. First, we compared the abunda…

Peyre, G., J. Lenoir, D. N. Karger, M. Gomez, A. Gonzalez, O. Broennimann, and A. Guisan. 2020. The fate of páramo plant assemblages in the sky islands of the northern Andes B. Jiménez‐Alfaro [ed.],. Journal of Vegetation Science 31: 967–980. https://doi.org/10.1111/jvs.12898

Aims: Assessing climate change impacts on biodiversity is a main scientific challenge, especially in the tropics, therefore, we predicted the future of plant species and communities on the unique páramo sky islands. We implemented the Spatially Explicit Species Assemblage Modelling framework, by i) …

Klages, J. P., U. Salzmann, T. Bickert, C.-D. Hillenbrand, K. Gohl, G. Kuhn, et al. 2020. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580: 81–86. https://doi.org/10.1038/s41586-020-2148-5

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1,2,3,4,5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether p…

Arfianti, T., and M. Costello. 2020. Global biogeography of marine amphipod crustaceans: latitude, regionalization, and beta diversity. Marine Ecology Progress Series 638: 83–94. https://doi.org/10.3354/meps13272

Studying the biogeography of amphipod crustaceans is of interest because they play an important role at lower trophic levels in ecosystems. Because they lack a planktonic larval stage, it has been hypothesized that marine benthic amphipod crustaceans may have short dispersal distances, high endemici…