Ciência habilitada por dados de espécimes

BELLO, A., MUKHTAR, F. B., & MUELLNER-RIEHL, A. N. (2021). DIVERSITY AND DISTRIBUTION OF NIGERIAN LEGUMES (FABACEAE). Phytotaxa, 480(2), 103–124. doi:10.11646/phytotaxa.480.2.1 https://doi.org/10.11646/phytotaxa.480.2.1

This study provides the first comprehensive checklist and analysis of the species of Fabaceae from Nigeria, based on over 5000 herbarium collections and the completed "Flora of West Tropical Africa (FWTA)". We report 552 taxa, belonging to 540 species in 155 genera from six subfamilies, with an outs…

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Quiroga, R. E., Premoli, A. C., & Fernández, R. J. (2020). Niche dynamics in amphitropical desert disjunct plants: Seeking for ecological and species‐specific influences. Global Ecology and Biogeography. doi:10.1111/geb.13215 https://doi.org/10.1111/geb.13215

Aim: Numerous studies have assessed whether species niches are conserved in geographically separated regions. However, most of them were performed on invasive species, with the limitation that such species have likely not yet reached their potential distribution in the invaded region. Here we test t…

Magri, D., Parra, I., Di Rita, F., Ni, J., Shichi, K., & Worth, J. R. P. (2020). Linking worldwide past and present conifer vulnerability. Quaternary Science Reviews, 250, 106640. doi:10.1016/j.quascirev.2020.106640 https://doi.org/10.1016/j.quascirev.2020.106640

Inventories of species recently extinct or threatened with extinction may be found in global databases. However, despite the large number of published fossil based-studies, specific databases on the vulnerability of species in the past are not available. We compiled a worldwide database of published…

Ortiz, A. M. D., & Torres, J. N. V. (2020). Assessing the Impacts of Agriculture and Its Trade on Philippine Biodiversity. Land, 9(11), 403. doi:10.3390/land9110403 https://doi.org/10.3390/land9110403

Many Philippine species are at risk of extinction because of habitat loss and degradation driven by agricultural land use and land-use change. The Philippines is one of the world’s primary banana and pineapple producers. The input-intensive style of plantation agriculture for these typically exporte…

Del Rio, C., Huang, J., Liu, P., Deng, W., Spicer, T. E. V., Wu, F., … Su, T. (2020). New Eocene fossil fruits and leaves of Menispermaceae from the central Tibetan Plateau and their biogeographic implications. Journal of Systematics and Evolution. doi:10.1111/jse.12701 https://doi.org/10.1111/jse.12701

Menispermaceae are a pantropical and temperate family with an extensive fossil record during the Paleogene, especially in North America and Europe, but with much less evidence from Asia. The latest fossil evidence indicates a succession of tropical to sub‐tropical flora on the central Tibetan Platea…

Rozefelds, A. C., Stull, G., Hayes, P., & Greenwood, D. R. (2020). The fossil record of Icacinaceae in Australia supports long-standing Palaeo-Antarctic rainforest connections in southern high latitudes. Historical Biology, 1–11. doi:10.1080/08912963.2020.1832089 https://doi.org/10.1080/08912963.2020.1832089

Fossil fruits of Icacinaceae are recorded from two Cenozoic sites in Australia, at Launceston in northern Tasmania and the Poole Creek palaeochannel in northern South Australia, representing the first report of fossil Icacinaceae from Australia. The Launceston material includes two endocarps with br…

Yi, S., Jun, C.-P., Jo, K., Lee, H., Kim, M.-S., Lee, S. D., … Lim, J. (2020). Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports, 10(1). doi:10.1038/s41598-020-74994-x https://doi.org/10.1038/s41598-020-74994-x

Loading...

Bazzicalupo, A. L., Whitton, J., & Berbee, M. L. (2019). Over the hills, but how far away? Estimates of mushroom geographic range extents. Journal of Biogeography. doi:10.1111/jbi.13617 https://doi.org/10.1111/jbi.13617

Aim: Geographic distributions of mushroom species remain poorly understood despite their importance for advancing our understanding of the habitat requirements, species interactions and ecosystem functions of this key group of organisms. Here, we estimate geographic range extents (maximum within‐spe…

Roalson, E. H., & Roberts, W. R. (2016). Distinct Processes Drive Diversification in Different Clades of Gesneriaceae. Systematic Biology, 65(4), 662–684. doi:10.1093/sysbio/syw012 https://doi.org/10.1093/sysbio/syw012

Using a time-calibrated phylogenetic hypothesis including 768 Gesneriaceae species (out of ~~ 3300 species) and more than 29,000 aligned bases from 26 gene regions, we test Gesneriaceae for diversification rate shifts and the possible proximal drivers of these shifts: geographic distributions, growt…