Ciência habilitada por dados de espécimes

Ramírez-Barahona, S. 2024. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales R. Warnock, and M. Zelditch [eds.],. Evolution. https://doi.org/10.1093/evolut/qpae034

Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage’s biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth–death process and the dispersal–extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic–Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils’ phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.

Cona, M., A. Chávez, P. León-Lobos, J. C. Marín, and P. Hinrichsen. 2023. Genetic structure and north-south decrease of genetic diversity in the Patagonian maqui berry (Aristotelia chilensis [Molina] Stuntz): implications for its conservation and use. Conservation Genetics 24: 693–705. https://doi.org/10.1007/s10592-023-01526-1

Maqui ( Aristotelia chilensis ) is a small tree endemic to Patagonia. It is currently being actively domesticated for its edible berries, which have high polyphenol content and anti-oxidant capability. However, little is known about its population structure and evolutionary history, information which is useful for the design of effective conservation and domestication strategies. Based on information from other species, we hypothesize that genetic diversity in maqui is higher in northern population and decrease to the South, associated with past migration patterns and as a result has well-structured populations. To explore the genetic diversity of 14 populations (183 samples) of this species, that represent the geographic distribution of the species in Chile we used 13 polymorphic microsatellite markers. Clusters based on Bayesian genetic and spatial structure analyses were used to reconstruct patterns of phylogeographic and demographic history. We found that maqui populations are well-structured, with a substantial reduction of genetic diversity from north to south. The lowest diversity was found in areas that were once covered by ice during the quaternary glaciation. In conclusion, three main genetic groups were revealed by Structure analysis, and genetic diversity reduction from its northern limit in central Chile to the Patagonian region was found, suggesting that an active recolonization process took place during the last few millennia following the last glacial period. These results will help to define accessions from different regions and contribute to support conservation and domestication initiatives.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Calvente, A., A. P. Alves da Silva, D. Edler, F. A. Carvalho, M. R. Fantinati, A. Zizka, and A. Antonelli. 2023. Spiny but photogenic: amateur sightings complement herbarium specimens to reveal the bioregions of cacti. American Journal of Botany. https://doi.org/10.1002/ajb2.16235

Premise: Cacti are characteristic elements of the Neotropical flora and of major interest for biogeographic, evolutionary, and ecological studies. Here we test global biogeographic boundaries for Neotropical Cactaceae using specimen‐based occurrences coupled with data from visual observations, as a means to tackle the known collection biases in the family.MethodsSpecies richness and record density were assessed for preserved specimens and human observations and a bioregional scheme tailored to Cactaceae was produced using the interactive web application Infomap Bioregions based on data from 261,272 point records cleaned through automated and manual steps.Key ResultsWe find that areas in Mexico and southwestern USA, Eastern Brazil and along the Andean region have the greatest density of records and the highest species richness. Human observations complement information from preserved specimens substantially, especially along the Andes. We propose 24 cacti bioregions, among which the most species‐rich are: northern Mexico/southwestern USA, central Mexico, southern central Mexico, Central America, Mexican Pacific coast, central and southern Andes, northwestern Mexico/extreme southwestern USA, southwestern Bolivia, northeastern Brazil, Mexico/Baja California.ConclusionsThe bioregionalization proposed shows biogeographical boundaries specific to cacti, and can thereby aid further evolutionary, biogeographic, and ecological studies by providing a validated framework for further analyses. This classification builds upon, and is distinctive from, other expert‐derived regionalization schemes for other taxa. Our results showcase how observation data, including citizen‐science records, can complement traditional specimen‐based data for biogeographic research, particularly for taxa with specific specimen collection and preservation challenges and those that are threatened or internationally protected.This article is protected by copyright. All rights reserved.

Tataridas, A., M. Moreira, L. Frazão, P. Kanatas, N. Ota, and I. Travlos. 2023. Biology of Invasive Plants 5. Solanum elaeagnifolium Cav. Invasive Plant Science and Management: 1–53. https://doi.org/10.1017/inp.2023.21

(no abstract available)

Velasco, N., N. Andrade, C. Smit, and R. Bustamante. 2023. Climatic niche convergence through space and time for a potential archaeophyte (Acacia caven) in South America. Scientific Reports 13. https://doi.org/10.1038/s41598-023-35658-8

AbstractBased on the niche conservatism hypothesis, i.e. the idea that niches remain unchanged over space and time, climatic niche modelling (CNM) is a useful tool for predicting the spread of introduced taxa. Recent advances have extended such predictions deeper in time for plant species dispersed by humans before the modern era. The latest CNMs successfully evaluate niche differentiation and estimate potential source areas for intriguing taxa such as archaeophytes (i.e., species introduced before 1492 AD). Here, we performed CNMs for Acacia caven, a common Fabaceae tree in South America, considered an archaeophyte west of the Andes, in Central Chile. Accounting for the infraspecific delimitation of the species, our results showed that even when climates are different, climatic spaces used by the species overlap largely between the eastern and western ranges. Despite slight variation, results were consistent when considering one, two, or even three-environmental dimensions, and in accordance with the niche conservatism hypothesis. Specific distribution models calibrated for each region (east vs west) and projected to the past, indicate a common area of occupancy available in southern Bolivia—northwest Argentina since the late Pleistocene, which could have acted as a source-area, and this signal becomes stronger through the Holocene. Then, in accordance with a taxon introduced in the past, and comparing regional vs continental distribution models calibrated at the infraspecific or species level, the western populations showed their spread status to be mostly in equilibrium with the environment. Our study thus indicates how niche and species distribution models are useful to improve our knowledge related to taxa introduced before the modern era.

Jiménez-López, D. A., M. J. Carmona-Higuita, G. Mendieta-Leiva, R. Martínez-Camilo, A. Espejo-Serna, T. Krömer, N. Martínez-Meléndez, and N. Ramírez-Marcial. 2023. Linking different resources to recognize vascular epiphyte richness and distribution in a mountain system in southeastern Mexico. Flora: 152261. https://doi.org/10.1016/j.flora.2023.152261

Mesoamerican mountains are important centers of endemism and diversity of epiphytes. The Sierra Madre of Chiapas in southeastern Mexico is a mountainous region of great ecological interest due to its high biological richness. We present the first checklist of epiphytes for this region based on a compilation of various information sources. In addition, we determined the conservation status for each species based on the Mexican Official Standard (NOM-059-SEMARNAT-2010), endemism based on geopolitical boundaries, spatial completeness with inventory completeness index, richness distribution with range maps, and the relationship between climatic variables (temperature and rainfall) with species richness using generalized additive models. Our dataset includes 9,799 records collected between 1896-2017. Our checklist includes 708 epiphytes within 160 genera and 26 families; the most species-rich family was Orchidaceae (355 species), followed by Bromeliaceae (82) and Polypodiaceae (79). There were 74 species within a category of risk and 59 species considered endemic. Completeness of epiphyte richness suggests that sampling is still largely incomplete, particularly in the lower parts of the mountain system. Species and family range maps show the highest richness at high elevations, while geographically richness increases towards the southeast. Epiphyte richness increases with increased rainfall, although a unimodal pattern was observed along the temperature gradient with a species richness peak between 16-20 C°. The Sierra Madre of Chiapas forms a refuge to more than 40% of all epiphytes reported for Mexico and its existing network of protected areas overlaps with the greatest epiphyte richness.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Roberts, J., and S. Florentine. 2022. Biology, distribution and management of the globally invasive weed Solanum elaeagnifolium Cav (silverleaf nightshade): A global review of current and future management challenges. Weed Research. https://doi.org/10.1111/wre.12556

Solanum elaeagnifolium Cav (silverleaf nightshade) is a deep-rooted, multi-stemmed, perennial, herbaceous woody plant that has been observed to threaten agricultural and native biodiversity worldwide. It is widely agreed that without efficient integrated management, S. elaeagnifolium will continue to cause significant economic and environmental damage across multiple scales. It is estimated that the annual economic impact of S. elaeagnifolium in Australia exceeds AUD $62 million, with this figure likely to be much higher in other countries invaded by this plant. It can also tolerate a high level of abiotic stress and survive in a range of temperatures (below freezing point to 34°C) and areas with an average yearly rainfall between 250 and 600 mm. Its extensive deep taproot system is capable of regenerating asexually and with its many seed dispersal mechanisms; it can quickly spread and establish itself within a region. This makes containment and management of the species especially challenging. Previous management has largely been focused on biological control, competition, essential oils, grazing pressure, herbicide application and manual removal. Despite the large range of available management techniques, there has been little success in the long-term control of S. elaeagnifolium, and only a handful of methods such as essential oils and herbicide application have shown reasonable success for controlling this weed. Therefore, this review aims to synthesise the identified and potentially useful approaches to control S. elaeagnifolium that have been recorded in the literature which deal with its biology, distribution and management. It also explores previous and current management techniques to ascertain the research gaps and knowledge required to assist in the effective and economically sustainable management of this invasive weed.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.