Ciência habilitada por dados de espécimes

Liu, S., S. Xia, D. Wu, J. E. Behm, Y. Meng, H. Yuan, P. Wen, et al. 2022. Understanding global and regional patterns of termite diversity and regional functional traits. iScience: 105538.

Our understanding of broad-scale biodiversity and functional trait patterns is largely based on plants, and relatively little information is available on soil arthropods. Here, we investigated the distribution of termite diversity globally and morphological traits and diversity across China. Our analyses showed increasing termite species richness with decreasing latitude at both the globally, and within-China. Additionally, we detected obvious latitudinal trends in the mean community value of termite morphological traits on average, with body size and leg length decreasing with increasing latitude. Furthermore, temperature, NDVI and water variables were the most important drivers controlling the variation in termite richness, and temperature and soil properties were key drivers of the geographic distribution of termite morphological traits. Our global termite richness map is one of the first high resolution maps for any arthropod group and especially given the functional importance of termites, our work provides a useful baseline for further ecological analysis.

Yoon, S., and W.-H. Lee. 2022. Spatial analysis of climatic and dispersion characteristics of Xylella fastidiosa outbreak by insect vectors. Journal of Asia-Pacific Entomology: 102011.

Xylella fastidiosa is a pathogen that causes fatal plant diseases and damage to horticultural crops. Establishing the basic parameters is necessary to assess the risk of disease outbreaks as there are concerns about the spread of X. fastidiosa. This is done by analyzing the climatic characteristics and distribution patterns of X. fastidiosa and related insect vectors. In this study, we aimed to derive the common climatic characteristics of X. fastidiosa and three major insect vectors by using a statistical density function for four climatic factors. In addition, the distance between the occurrence areas was calculated spatiotemporally and classified into natural and anthropogenic spread. The optimal climatic conditions identified for X. fastidiosa and the insect vectors were similar, suggesting a high potential for X. fastidiosa spread when both occur in a neighborhood area. X. fastidiosa spread mostly depends on anthropogenic pathways, but natural spread by insect vectors could increase. This study provides necessary insights for the risk assessment of X. fastidiosa spread based on climate similarity and spread patterns.

Li, X., and J. J. Wiens. 2022. Estimating Global Biodiversity: the Role of Cryptic Insect Species. Systematic Biology.

Abstract How many species are there on Earth and to what groups do these species belong? These fundamental questions span systematics, ecology, and evolutionary biology. Yet, recent estimates of overall global biodiversity have ranged wildly, from the low millions to the trillions. Insects are a pivotal group for these estimates. Insects make up roughly half of currently described extant species (across all groups), with ~1 million described species. Insect diversity is also crucial because many other taxa have species that may be unique to each insect host species, including bacteria, apicomplexan protists, microsporidian fungi, nematodes, and mites. Several projections of total insect diversity (described and undescribed) have converged on ~6 million species. However, these projections have not incorporated the morphologically cryptic species revealed by molecular data. Here, we estimate the extent of cryptic insect diversity. We perform a systematic review of studies that used explicit species-delimitation methods with multi-locus data. We estimate that each morphology-based insect species contains (on average) 3.1 cryptic species. We then use these estimates to project the overall number of species on Earth and their distribution among major groups. Our estimates suggest that overall global biodiversity may range from 563 million to 2.2 billion species. [Biodiversity; cryptic species; insects; species delimitation; species richness]

Gil‐Tapetado, D., C. D. Soria, J. F. Gómez, J. M. Sesma, and F. J. Cabrero‐Sañudo. 2022. Aridity could have driven the local extinction of a common and multivoltine butterfly. Ecological Entomology.

Identifying which species are being negatively impacted by climate change and the mechanisms driving their decline is essential to effectively protect biodiversity.Coenonympha pamphilus is a common and generalist butterfly, widely distributed throughout the Western Palearctic, being multivoltine in southern Europe. Previous studies indicate that it will not be substantially affected by climate change; however, it has seemingly disappeared from the southeast of the Iberian Peninsula in the last decades.Here, we aim to determine if it has effectively disappeared from this area, as well as identify the environmental conditions limiting its distribution and the potential causes behind this a priori local extinction.We downloaded all the occurrence records of C. pamphilus and analysed their spatial and temporal trends. To identify the climatic variables driving the distribution of this butterfly in the Iberian Peninsula, we performed an ensemble species distribution model (SDM), combining 600 individual models produced with 6 algorithms.We confirmed that C. pamphilus has not been observed in the southeast of the Iberian Peninsula since 2008. Aridity was the main factor limiting the distribution of C. pamphilus in our ensemble SDM, with areas with high aridity being unsuitable for this species.We hypothesise that multivoltinism is the mechanism driving this local extirpation, as high aridity is causing host plants (Poaceae) to wither prematurely, precluding the development of the second and/or third generations of the butterfly. Even though generalist species are theoretically more resilient to climate change, other traits such as multivoltinism may increase their vulnerability and need to be further investigated.

YUNAKOV, N. 2022. A review of the genus Brachysomus Schoenherr (Coleoptera: Curculionidae: Entiminae). Zootaxa 5193: 1–165.

The genus Brachysomus Schoenherr, 1823 is reviewed. A comparative morphological study of adults from 56 Brachysomus species is provided. Redescriptions, diagnoses and identification keys are given. Descriptions of two new species are provided: B. (s. str.) podlussanyi sp. n. from Greece and B. (s. str.) pseudosetiger sp. n. from Bulgaria, which appear to be closely related to B. (s. str.) mihoki Penecke, 1914. Females of B. (s. str.) longipterus Białooki, 2007 are described. The poorly known B. (Hippomias) moczarskii Penecke, 1924 is restored from synonymy with B. (H.) oertzeni Faust, 1889. New synonyms: B. (s. str.) echinatus (Bonsdorff, 1785) = B. (s. str.) hirsutus Iablokoff-Khnzorian, 1958 syn. n. New combinations: Brachysomus (s. str.) lituratus (Reitter, 1884) comb. n. from Foucartia Jacquelin du Val, 1854; Eurosphalmus tenuicollis (Yunakov, 2006) comb. n. from Brachysomus, Eurosphalmus cribrarius (Białooki, 2007) comb. n. from Brachysomus, Nanomias skodai (Białooki, 2007) comb. n. from Brachysomus, and Chiloneus bonnairei (Hoffmann, 1942) comb. n. from Brachysomus. Lectotypes are designated for: Strophosomus hirtus Boheman, 1845; Brachysomus ornatus Stierlin, 1892; B. bensae Stierlin, 1893; Platytarsus fasciatus Stierlin, 1899; and P. setiger Gyllenhal, 1840. For each species, all known localities are presented on a distribution map. Ecological preferences of Brachysomus species are specified. First records of Brachysomus (s. str.) fremuthi Košťál, 1991 from Romania, B. (Hippomias) carpathicus Košťál, 1992 from Serbia, and B. (H.) ponticus Apfelbeck, 1898 from Greece are given.

Xu, X.-T., J. Szwedo, D.-Y. Huang, W.-Y.-D. Deng, M. Obroślak, F.-X. Wu, and T. Su. 2022. A New Genus of Spittlebugs (Hemiptera, Cercopidae) from the Eocene of Central Tibetan Plateau. Insects 13: 770.

The superfamily Cercopoidea is commonly named as “spittlebugs”, as its nymphs produce a spittle mass to protect themselves. Cosmoscartini (Cercopoidea: Cercopidae) is a large and brightly colored Old World tropical tribe, including 11 genera. A new genus Nangamostethos gen. nov. (type species: Nangamostethostibetense sp. nov.) of Cosmoscartini is described from Niubao Formation, the late Eocene of central Tibetan Plateau (TP), China. Its placement is ensured by comparison with all the extant genera of the tribe Cosmoscartini. The new fossil represents one of few fossil Cercopidae species described from Asia. It is likely that Nangamostethos was extinct from the TP due to the regional aridification and an overturn of plant taxa in the late Paleogene.

Vilardo, G., M. Faccoli, J. C. Corley, and M. V. Lantschner. 2022. Factors driving historic intercontinental invasions of European pine bark beetles. Biological Invasions 24: 2973–2991.

Largely assisted by global trade, alien insect species are being introduced into new territories at unprecedented rates. Among forest insects, pine bark beetles (Coleoptera: Curculionidae, Scolytinae) are a large and diverse group commonly recognized as successful invaders and important tree mortality agents in pine forests and commercial plantations. In this study, we collected information on the native and invaded distribution of 51 European bark beetles developing in Pinus species. We analyzed their invasion history in the Southern Hemisphere and the Americas and explored several factors that can help explain their invasion success: (1) propagule pressure: interception frequency in the non-native range(2) invasibility: potential establishment area based on climatic matching and host availability and (3) invasiveness: biological traits of the bark beetles ( i.e. , feeding habit, host range, body size, mating system, colonization behavior). We found that most (87%) of the introductions of the species to new regions occurred in the period 1960–2013, and that variables related with the three main factors were relevant in explaining invasion success. Propagule pressure was the factor that best explained bark beetle invasion probability, followed by invasibility of the novel area. In turn, biological attributes like mating system, body size and host range were also relevant, but showed a lower relative importance. Our study contributes to understand the main factors that explain forest insect invasion success. This information is critical for predicting future invasions to new regions and optimizing early-detection and biosecurity policies.

Kolanowska, M. 2021. The future of a montane orchid species and the impact of climate change on the distribution of its pollinators and magnet species. Global Ecology and Conservation 32: e01939.

The aim of this study was to evaluate the impact of global warming on suitable niches of montane orchid, Traunsteinera globosa, using ecological niche modelling approach. Additionally, the effect of various climate change scenarios on future changes in the distribution and overlap of the orchid magn…

Ortego, J., and L. L. Knowles. 2021. Geographical isolation versus dispersal: Relictual alpine grasshoppers support a model of interglacial diversification with limited hybridization. Molecular Ecology 31: 296–312.

Alpine biotas are paradigmatic of the countervailing roles of geographic isolation and dispersal during diversification. In temperate regions, repeated distributional shifts driven by Pleistocene climatic oscillations produced both recurrent pulses of population fragmentation and opportunities for g…

Busch, A. K., B. E. Wham, and J. F. Tooker. 2021. Life History, Biology, and Distribution of Pterostichus melanarius (Coleoptera: Carabidae) in North America J. Schmidt [ed.],. Environmental Entomology 50: 1257–1266.

Pterostichus melanarius (Illiger, 1798) is a Palearctic generalist predator native to Europe. It was unintentionally introduced to North America at least twice in the mid 1920s and has since become widespread in Canada and the United States. Although P. melanarius is a valuable natural enemy in many…