Ciência habilitada por dados de espécimes

Schertler, A., B. Lenzner, S. Dullinger, D. Moser, J. L. Bufford, L. Ghelardini, A. Santini, et al. 2023. Biogeography and global flows of 100 major alien fungal and fungus‐like oomycete pathogens. Journal of Biogeography.

AbstractAimSpreading infectious diseases associated with introduced pathogens can have devastating effects on native biota and human livelihoods. We analyse the global distribution of 100 major alien fungal and oomycete pathogens with substantial socio‐economic and environmental impacts and examine their taxonomy, ecological characteristics, temporal accumulation trajectories, regional hot‐ and coldspots of taxon richness and taxon flows between continents.LocationGlobal.TaxonAlien/cryptogenic fungi and fungus‐like oomycetes, pathogenic to plants or animals.MethodsTo identify over/underrepresented classes and phyla, we performed Chi2 tests of independence. To describe spatial patterns, we calculated the region‐wise richness and identified hot‐ and coldspots, defined as residuals after correcting taxon richness for region area and sampling effort via a quasi‐Poisson regression. We examined the relationship with environmental and socio‐economic drivers with a multiple linear regression and evaluated a potential island effect. Regional first records were pooled over 20‐year periods, and for global flows the links between the native range to the alien regions were mapped.ResultsPeronosporomycetes (Oomycota) were overrepresented among taxa and regional taxon richness was positively correlated with area and sampling effort. While no island effect was found, likely due to host limitations, hotspots were correlated with human modification of terrestrial land, per capita gross domestic product, temperate and tropical forest biomes, and orobiomes. Regional first records have increased steeply in recent decades. While Europe and Northern America were major recipients, about half of the taxa originate from Asia.Main ConclusionsWe highlight the putative importance of anthropogenic drivers, such as land use providing a conducive environment, contact opportunities and susceptible hosts, as well as economic wealth likely increasing colonisation pressure. While most taxa were associated with socio‐economic impacts, possibly partly due to a bias in research focus, about a third show substantial impacts to both socio‐economy and the environment, underscoring the importance of maintaining a wholescale perspective across natural and managed systems.

Hill, A., M. F. T. Jiménez, N. Chazot, C. Cássia‐Silva, S. Faurby, L. Herrera‐Alsina, and C. D. Bacon. 2023. Apparent effect of range size and fruit colour on palm diversification may be spurious. Journal of Biogeography.

Aim Fruit selection by animal dispersers with different mobility directly impacts plant geographical range size, which, in turn, may impact plant diversification. Here, we examine the interaction between fruit colour, range size and diversification rate in palms by testing two hypotheses: (1) species with fruit colours attractive to birds have larger range sizes due to high dispersal ability and (2) disperser mobility affects whether small or large range size has higher diversification, and intermediate range size is expected to lead to the highest diversification rate regardless of disperser. Location Global. Time Period Contemporary (or present). Major Taxa Studied Palms (Arecaceae). Methods Palm species were grouped based on likely animal disperser group for given fruit colours. Range sizes were estimated by constructing alpha convex hull polygons from distribution data. We examined disperser group, range size or an interaction of both as possible drivers of change in diversification rate over time in a likelihood dynamic model (Several Examined State-dependent Speciation and Extinction [SecSSE]). Models were fitted, rate estimates were retrieved and likelihoods were compared to those of appropriate null models. Results Species with fruit colours associated with mammal dispersal had larger ranges than those with colours associated with bird dispersal. The best fitting SecSSE models indicated that the examined traits were not the primary driver of the heterogeneity in diversification rates in the model. Extinction rate complexity had a marked impact on model performance and on diversification rates. Main Conclusions Two traits related to dispersal mobility, range size and fruit colour, were not identified as the main drivers of diversification in palms. Increased model extinction rate complexity led to better performing models, which indicates that net diversification should be estimated rather than speciation alone. However, increased complexity may lead to incorrect SecSSE model conclusions without careful consideration. Finally, we find palms with more mobile dispersers do not have larger range sizes, meaning other factors are more important determinants of range size.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society.

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Örücü, Ö. K., H. Azadi, E. S. Arslan, Ö. Kamer Aksoy, S. Choobchian, S. N. Nooghabi, and H. I. Stefanie. 2023. Predicting the distribution of European Hop Hornbeam: application of MaxEnt algorithm and climatic suitability models. European Journal of Forest Research.

Ostrya carpinifolia Scop. (European Hop Hornbeam) is a native tree in Europe as a species of the Betulaceae family. European Hop Hornbeam has a significant value for the European flora, and assessing the effects of climate change on habitats of species is essential for its sustainability. With this point of view, the main aim of the research was to predict the present and future potential distribution of European Hop Hornbeam across Europe. ‘‘IPSL-CM6A-LR’’ climate change model, ninety-six occurrence data, and seven bioclimatic variables were used to predict potential distribution areas with MaxEnt 3.4.1 program. This study applied a change analysis by comparing the present predicted potential distribution of European Hop Hornbeam with the future predicted potential distribution under the 2041–2060 and 2081–2100 SSP2 4.5 and SSP5 8.5 climate change scenarios. Study results indicated that the sum of suitable and highly suitable areas of European Hop Hornbeam is calculated to be 1,136,706 km 2 for the current potential distribution. On the contrary, 2,107,187 km 2 of highly suitable and suitable areas will be diminished in the worst case by 2100. The most affected bioclimatic variable is BIO 19 (Precipitation of Coldest Quarter), considering the prediction of the species distribution. These findings indicated that the natural ecosystems of the Mediterranean region will shift to northern areas. This study represented a reference for creating a strategy for the protection and conservation of the species in the future.

Denk, T., G. W. Grimm, A. L. Hipp, J. M. Bouchal, E.-D. Schulze, and M. C. Simeone. 2023. Niche evolution in a northern temperate tree lineage: biogeographic legacies in cork oaks (Quercus sect. Cerris). Annals of Botany.

Abstract Background and Aims Cork oaks (Quercus sect. Cerris) comprise 15 extant species in Eurasia. Despite being a small clade, they display a range of leaf morphologies comparable to the largest sections (>100 spp.) in Quercus. Their fossil record extends back to the Eocene. Here, we explore how cork oaks achieved their modern ranges and how legacy effects may explain niche evolution in modern species of section Cerris and its sister section Ilex, the holly oaks. Methods We inferred a dated phylogeny for cork and holly oaks using a reduced-representation next-generation sequencing method, restriction-site associated DNA sequencing (RAD-seq) and used D-statistics to investigate gene flow hypotheses. We estimated divergence times using a fossilized birth-death (FBD) model calibrated with 47 fossils. We used Köppen profiles, selected bioclimatic parameters, and forest biomes occupied by modern species to infer ancestral climatic and biotic niches. Key Results East Asian and Western Eurasian cork oaks diverged initially in the Eocene. Subsequently, four Western Eurasian lineages (subsections) differentiated during the Oligocene and Miocene. Evolution of leaf size, form, and texture partly correlates with multiple transitions from ancestral humid temperate climates to Mediterranean, arid, and continental climates. Distantly related but ecologically similar species converged on similar leaf traits in the process. Conclusions Originating in temperate (frost-free) biomes, Eocene to Oligocene ranges of the primarily deciduous cork oaks were restricted to higher latitudes (Siberia to north of Paratethys). Members of the evergreen holly oaks (sect. Ilex) also originated in temperate biomes but migrated south- and south-westwards into then-(sub)tropical southern China and south-eastern Tibet during the Eocene, then westwards along existing pre-Himalayan mountain ranges. Divergent biogeographic histories and deep-time phylogenetic legacies—in cold and drought tolerance, nutrient storage, and fire resistance—thus account for the modern species mosaic of Western Eurasian oak communities, which comprise oaks belonging to four sections.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073.

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Crivellaro, A., A. Piermattei, J. Dolezal, P. Dupree, and U. Büntgen. 2022. Biogeographic implication of temperature-induced plant cell wall lignification. Communications Biology 5.

More than 200 years after von Humboldt’s pioneering work on the treeline, our understanding of the cold distribution limit of upright plant growth is still incomplete. Here, we use wood anatomical techniques to estimate the degree of stem cell wall lignification in 1770 plant species from six continents. Contrary to the frequent belief that small plants are less lignified, we show that cell wall lignification in ‘woody’ herbs varies considerably. Although trees and shrubs always exhibit lignified cell walls in their upright stems, small plants above the treeline may contain less lignin. Our findings suggest that extremely cold growing season temperatures can reduce the ability of plants to lignify their secondary cell walls. Corroborating experimental and observational evidence, this study proposes to revisit existing theories about the thermal distribution limit of upright plant growth and to consider biochemical and biomechanical factors for explaining the global treeline position. A global survey of lignin content in plant cell walls corroborates suggestions that cold temperature limits upright tree growth.

Escolástico-Ortiz, D. A., L. Hedenäs, D. Quandt, D. Harpke, J. Larraín, M. Stech, and J. C. Villarreal A. 2022. Cryptic speciation shapes the biogeographic history of a northern distributed moss. Botanical Journal of the Linnean Society.

Abstract Increasing evidence indicates that wide distributed bryophyte taxa with homogeneous morphology may represent separate evolutionary lineages. The evolutionary histories of these cryptic lineages may be related to historical factors, such as the climatic oscillations in the Quaternary. Thus, the post-glacial demographic signatures paired with cryptic speciation may result in complex phylogeographic patterns. This research has two aims: to determine whether the widespread moss Racomitrium lanuginosum represents cryptic molecular taxa across the Northern Hemisphere and to infer the effects of Quaternary glaciations on spatial genetic diversity. We used the internal transcribed spacer (ITS) marker to resolve the phylogeographic history of the species and single nucleotide polymorphisms (genotyping-by-sequencing) to infer the genetic structure and demographic history. Finally, we assessed the historical changes in the distribution range using species distribution models. Racomitrium lanuginosum comprises distinct molecular lineages sympatrically distributed in the Northern Hemisphere. We also uncovered long-distance dispersal from eastern North America to Scandinavia and potential in situ survival in northern Scandinavia. Due to the genetic signatures, the Alaska Peninsula could be considered a glacial refugium. The species experienced post-glacial expansion northwards in the Northern Hemisphere, mainly from the Alaska Peninsula. Our results exemplify the complex phylogeographic history in cold environments and contribute to recognizing evolutionary patterns in the Northern Hemisphere.

Chevalier, M. 2022. <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past 18: 821–844.

Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.

Sluiter, I. R. K., G. R. Holdgate, T. Reichgelt, D. R. Greenwood, A. P. Kershaw, and N. L. Schultz. 2022. A new perspective on Late Eocene and Oligocene vegetation and paleoclimates of South-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 596: 110985.

We present a composite terrestrial pollen record of latest Eocene through Oligocene (35.5–23 Ma) vegetation and climate change from the Gippsland Basin of south-eastern Australia. Climates were overwhelmingly mesothermic through this time period, with mean annual temperature (MAT) varying between 13 and 18 °C, with an average of 16 °C. We provide evidence to support a cooling trend through the Eocene–Oligocene Transition (EOT), but also identify three subsequent warming cycles through the Oligocene, leading to more seasonal climates at the termination of the Epoch. One of the warming episodes in the Early Oligocene appears to have also occurred at two other southern hemisphere sites at the Drake Passage as well as off eastern Tasmania, based on recent research. Similarities with sea surface temperature records from modern high southern latitudes which also record similar cycles of warming and cooling, are presented and discussed. Annual precipitation varied between 1200 and 1700 mm/yr, with an average of 1470 mm/yr through the sequence. Notwithstanding the extinction of Nothofagus sg. Brassospora from Australia and some now microthermic humid restricted Podocarpaceae conifer taxa, the rainforest vegetation of lowland south-eastern Australia is reconstructed to have been similar to present day Australian Evergreen Notophyll Vine Forests existing under the sub-tropical Köppen-Geiger climate class Cfa (humid subtropical) for most of the sequence. Short periods of cooler climates, such as occurred through the EOT when MAT was ~ 13 °C, may have supported vegetation similar to modern day Evergreen Microphyll Fern Forest. Of potentially greater significance, however, was a warm period in the Early to early Late Oligocene (32–26 Ma) when MAT was 17–18 °C, accompanied by small but important increases in Araucariaceae pollen. At this time, Araucarian Notophyll/Microphyll Vine Forest likely occurred regionally.