Ciência habilitada por dados de espécimes
Nuñez Otaño, N. B., E. V. Pérez-Pincheira, V. Coll Moritan, and M. Llorens. 2024. Maastrichtian palaeoenvironments and palaeoclimate reconstruction in southern South America (Patagonia, Argentina) based on fossil fungi and algae using open data resources. Historical Biology: 1–15. https://doi.org/10.1080/08912963.2024.2408804
The use of non-pollen palynomorphs (NPP), particularly fossil fungi and algae, as palaeobiological proxies for Late Cretaceous palaeoenvironmental and palaeoclimatic reconstructions of warm-to-hot greenhouse conditions, can enhance our understanding of climate change impacts on modern Patagonian environments. This study aimed to reconstruct the Maastrichtian palaeoenvironment and palaeoclimate in the Cañadón Asfalto Basin (CAB, Chubut Province) by testing these NPPs as proxies using the Nearest Living Relative method (NLR). Moreover, using modern ecological requirements from open-source databases, such as GBIF and processing it with an open-source, cross-platform tool like QGIS, linked with Köppen-Geiger shapefiles, provided evidence of climate-driven palaeo-distribution patterns of fungal and algal diversity at CAB. Applying modern ecological requirements and biogeographic distribution data, we reconstructed the palaeoclimate as temperate with evenly distributed precipitation and warm summers, corresponding to the Cfb climate zone in Köppen-Geiger classifications. Additionally, our methodology produced reliable results regarding Cenozoic floras’ physiognomies based on fossil fungi, revealing a transition from sparsely wooded areas with palms and prairies to complex forest ecosystems with palms, deciduous trees, and shrubland. Furthermore, testing Cretaceous algae with the NLR method, for the first time, provided comprehensive insights into past water body characteristics, including trophic state and water quality.
Silva-Valderrama, I., J.-R. Úrbez-Torres, and T. J. Davies. 2024. From host to host: The taxonomic and geographic expansion of Botryosphaeriaceae. Fungal Biology Reviews 48: 100352. https://doi.org/10.1016/j.fbr.2023.100352
Fungal pathogens are responsible for 30% of emerging infectious diseases (EIDs) in plants. The risk of a pathogen emerging on a new host is strongly tied to its host breadth; however, the determinants of host range are still poorly understood. Here, we explore the factors that shape host breadth of plant pathogens within Botryosphaeriaceae, a fungal family associated with several devastating diseases in economically important crops. While most host plants are associated with just one or a few fungal species, some hosts appear to be susceptible to infection by multiple fungi. However, the variation in the number of fungal taxa recorded across hosts is not easily explained by heritable plant traits. Nevertheless, we reveal strong evolutionary conservatism in host breadth, with most fungi infecting closely related host plants, but with some notable exceptions that seem to have escaped phylogenetic constraints on host range. Recent anthropogenic movement of plants, including widespread planting of crops, has provided new opportunities for pathogen spillover. We suggest that constraints to pathogen distributions will likely be further disrupted by climate change, and we may see future emergence events in regions where hosts are present but current climate is unfavorable.
Schertler, A., B. Lenzner, S. Dullinger, D. Moser, J. L. Bufford, L. Ghelardini, A. Santini, et al. 2023. Biogeography and global flows of 100 major alien fungal and fungus‐like oomycete pathogens. Journal of Biogeography. https://doi.org/10.1111/jbi.14755
AbstractAimSpreading infectious diseases associated with introduced pathogens can have devastating effects on native biota and human livelihoods. We analyse the global distribution of 100 major alien fungal and oomycete pathogens with substantial socio‐economic and environmental impacts and examine their taxonomy, ecological characteristics, temporal accumulation trajectories, regional hot‐ and coldspots of taxon richness and taxon flows between continents.LocationGlobal.TaxonAlien/cryptogenic fungi and fungus‐like oomycetes, pathogenic to plants or animals.MethodsTo identify over/underrepresented classes and phyla, we performed Chi2 tests of independence. To describe spatial patterns, we calculated the region‐wise richness and identified hot‐ and coldspots, defined as residuals after correcting taxon richness for region area and sampling effort via a quasi‐Poisson regression. We examined the relationship with environmental and socio‐economic drivers with a multiple linear regression and evaluated a potential island effect. Regional first records were pooled over 20‐year periods, and for global flows the links between the native range to the alien regions were mapped.ResultsPeronosporomycetes (Oomycota) were overrepresented among taxa and regional taxon richness was positively correlated with area and sampling effort. While no island effect was found, likely due to host limitations, hotspots were correlated with human modification of terrestrial land, per capita gross domestic product, temperate and tropical forest biomes, and orobiomes. Regional first records have increased steeply in recent decades. While Europe and Northern America were major recipients, about half of the taxa originate from Asia.Main ConclusionsWe highlight the putative importance of anthropogenic drivers, such as land use providing a conducive environment, contact opportunities and susceptible hosts, as well as economic wealth likely increasing colonisation pressure. While most taxa were associated with socio‐economic impacts, possibly partly due to a bias in research focus, about a third show substantial impacts to both socio‐economy and the environment, underscoring the importance of maintaining a wholescale perspective across natural and managed systems.
Alkhalifah, D. H. M., E. Damra, M. B. Melhem, and W. N. Hozzein. 2023. Fungus under a Changing Climate: Modeling the Current and Future Global Distribution of Fusarium oxysporum Using Geographical Information System Data. Microorganisms 11: 468. https://doi.org/10.3390/microorganisms11020468
The impact of climate change on biodiversity has been the subject of numerous research in recent years. The multiple elements of climate change are expected to affect all levels of biodiversity, including microorganisms. The common worldwide fungus Fusarium oxysporum colonizes plant roots as well as soil and several other substrates. It causes predominant vascular wilt disease in different strategic crops such as banana, tomato, palm, and even cotton, thereby leading to severe losses. So, a robust maximum entropy algorithm was implemented in the well-known modeling program Maxent to forecast the current and future global distribution of F. oxysporum under two representative concentration pathways (RCPs 2.6 and 8.5) for 2050 and 2070. The Maxent model was calibrated using 1885 occurrence points. The resulting models were fit with AUC and TSS values equal to 0.9 (±0.001) and 0.7, respectively. Increasing temperatures due to global warming caused differences in habitat suitability between the current and future distributions of F. oxysporum, especially in Europe. The most effective parameter of this fungus distribution was the annual mean temperature (Bio 1); the two-dimensional niche analysis indicated that the fungus has a wide precipitation range because it can live in both dry and rainy habitats as well as a range of temperatures in which it can live to certain limits. The predicted shifts should act as an alarm sign for decision makers, particularly in countries that depend on such staple crops harmed by the fungus.
[NO TITLE AVAILABLE] https://doi.org/10.50826/bnmnsbot.48.2_31
To clarify biogeographic patterns of two mushroom species (Phallus merulinus and Geastrum courtecuissei) previously reported from Myanmar, sequence data of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA were retrieved from GenBank. The BLAST search and phylogenetic analyses of Phallus indicated that P. merulinus and P. atrovolvatus from wide areas, including Australia, Myanmar, Thailand, Brazil, and French Guiana, cannot be distinguished molecularly. The species was, therefore, considered widespread across tropical to subtropical regions. In contrast, G. courtecuissei from Myanmar was tightly clustered exclusively with G. courtecuissei from Central and South America, supporting the idea of its disjunct distribution between Southeast Asia (Myanmar) and Central-South Americas.
Zhang, N., Z. Liao, S. Wu, M. P. Nobis, J. Wang, and N. Wu. 2021. Impact of climate change on wheat security through an alternate host of stripe rust. Food and Energy Security 11. https://doi.org/10.1002/fes3.356
In the 21st century, stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is still the most devastating disease of wheat globally. Despite the critical roles of the alternate host plants, the Berberis species, in the sexual reproduction and spread of Pst, the climate change impacts on t…
Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885
The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…
Chauhan, H. K., S. Oli, A. K. Bisht, C. Meredith, and D. Leaman. 2021. Review of the biology, uses and conservation of the critically endangered endemic Himalayan species Nardostachys jatamansi (Caprifoliaceae). Biodiversity and Conservation 30: 3315–3333. https://doi.org/10.1007/s10531-021-02269-6
The commercial demand for Nardostachys jatamansi in the global market has raised concern about its long-term sustainability. The genus Nardostachys is represented by the single species (Nardostachys jatamansi) endemic to the Himalayas. This study reviews biology, uses, threats, knowledge gaps, and c…
Xu, J., N. Chai, T. Zhang, T. Zhu, Y. Cheng, S. Sui, M. Li, and D. Liu. 2021. Prediction of temperature tolerance in Lilium based on distribution and climate data. iScience 24: 102794. https://doi.org/10.1016/j.isci.2021.102794
There are plenty publications providing guidance for resistant taxa selection by experimental researches while the number of experimental taxa is often restricted. In this study, we presented a concise method to predict the temperature tolerance of wild Lilium in China based on open access botanical…
Géron, C., J. J. Lembrechts, J. Borgelt, J. Lenoir, R. Hamdi, G. Mahy, I. Nijs, and A. Monty. 2021. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biological Invasions 23: 1765–1779. https://doi.org/10.1007/s10530-021-02469-9
When colonizing new areas, alien plant species success can depend strongly on local environmental conditions. Microclimatic barriers might be the reason why some alien plant species thrive in urban areas, while others prefer rural environments. We tested the hypothesis that the climate in the native…