Ciência habilitada por dados de espécimes

Novoa, A., H. Hirsch, M. L. Castillo, S. Canavan, L. González, D. M. Richardson, P. Pyšek, et al. 2023. Genetic and morphological insights into the Carpobrotus hybrid complex around the world. NeoBiota 89: 135–160. https://doi.org/10.3897/neobiota.89.109164

The genus Carpobrotus N.E.Br. comprises between 12 and 25 species, most of which are native to South Africa. Some Carpobrotus species are considered among the most damaging invasive species in coastal dune systems worldwide. In their introduced areas, these species represent a serious threat to native species and significantly impact soil conditions and geochemical processes. Despite being well studied, the taxonomy of Carpobrotus remains problematic, as the genus comprises a complex of species that hybridize easily and are difficult to distinguish from each other. To explore the population genetic structure of invasive Carpobrotus species (i.e., C. acinaciformis and C. edulis) across a significant part of their native and non-native ranges, we sampled 40 populations across Argentina, Italy, New Zealand, Portugal, South Africa, Spain, and the USA. We developed taxon-specific microsatellite markers using a Next Generation Sequencing approach to analyze the population genetic structure and incidence of hybridization in native and non-native regions. We identified three genetically distinct clusters, which are present in both the native and non-native regions. Based on a set of selected morphological characteristics, we found no clear features to identify taxa morphologically. Our results suggest that the most probable sources of global introductions of Carpobrotus species are the Western Cape region of South Africa and the coastline of California. We suggest that management actions targeting Carpobrotus invasions globally should focus on preventing additional introductions from the east coast of South Africa, and on searching for prospective biocontrol agents in the Western Cape region of South Africa.

Kolanowska, M. 2023. Future distribution of the epiphytic leafless orchid (Dendrophylax lindenii), its pollinators and phorophytes evaluated using niche modelling and three different climate change projections. Scientific Reports 13. https://doi.org/10.1038/s41598-023-42573-5

The identification of future refugia for endangered species from the effects of global warming is crucial for improving their conservation. Because climate-driven shifts in ranges and local extinctions can result in a spatial mismatch with their symbiotic organisms, however, it is important to incorporate in niche modelling the ecological partners of the species studied. The aim of this study was to evaluate the effect of climate change on the distribution of suitable niches for the ghost orchid ( Dendrophylax lindenii ) and its phorophytes and pollinators. Thus, its five species of host trees and three pollen vectors were included in the analysis. Climatic preferences of all the species studied were evaluated. The modelling was based on three different climate change projections and four Shared Socio-economic Pathway trajectories. All the species analysed are characterized by narrow temperature tolerances, which with global warming are likely to result in local extinctions and range shifts. D. lindenii is likely to be subjected to a significant loss of suitable niches, but within a reduced geographical range, both host trees and pollen vectors will be available in the future. Future conservation of this orchid should focus on areas that are likely be suitable for it and its ecological partners.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Rosas, M. R., R. A. Segovia, and P. C. Guerrero. 2023. Climatic Niche Dynamics of the Astereae Lineage and Haplopappus Species Distribution following Amphitropical Long-Distance Dispersal. Plants 12: 2721. https://doi.org/10.3390/plants12142721

The tribe Astereae (Asteraceae) displays an American Amphitropical Disjunction. To understand the eco-evolutionary dynamics associated with a long-distance dispersal event and subsequent colonization of extratropical South America, we compared the climatic and geographic distributions of South American species with their closest North American relatives, focusing on the diverse South American Astereae genus, Haplopappus. Phylogenetic analysis revealed that two South American genera are closely related to seven North American genera. The climatic niche overlap (D = 0.5) between South and North America exhibits high stability (0.89), low expansion (0.12), and very low unfilling (0.04). The distribution of the North American species predicted the climatic and geographic space occupied by the South American species. In central Chile, Haplopappus showed a non-random latitudinal gradient in species richness, with Mediterranean climate variables mainly explaining the variation. Altitudinal patterns indicated peak richness at 600 m, declining at lower and higher elevations. These findings support climatic niche conservatism in shaping Haplopappus species distribution and diversity. Two major endemism zones were identified in central Chile and the southern region, with a transitional zone between Mediterranean and Temperate macro-bioclimates. Our results indicate strong niche conservatism following long-distance dispersal and slight niche expansion due to unique climatic variables in each hemisphere.

Graham, C. D. K., E. J. Forrestel, A. L. Schilmiller, A. T. Zemenick, and M. G. Weber. 2023. Evolutionary signatures of a trade-off in direct and indirect defenses across the wild grape genus Vitis. Evolution. https://doi.org/10.1093/evolut/qpad140

Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these pattern remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism, and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlate with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.

Babin, C. H., and C. D. Bell. 2023. The effects of climate change on cytotype distributions of endemic genera in the North American Coastal Plain. Plant Ecology & Diversity. https://doi.org/10.1080/17550874.2023.2239244

Background Approximately 33% of plant species face extinction due to climate change. Polyploidisation, a process resulting in more than two complete sets of chromosomes, may be promoted by periods of climate fluctuations. Ecological niche modelling (ENM) using occurrences of endemic plants in the North American Coastal Plain (NACP) biodiversity hotspot could be used to evaluate the potential effects of climate change on cytotype distributions. Aims We used known diploid and polyploid taxa endemic to the NACP to test hypotheses that diploids and polyploids differed in habitat preferences, considerable overlap existed between cytotypes, and polyploid distributions would increase under climate change projections. Methods We examined niche identity and overlap of 28 congeneric ploidy level pairs and performed ENM to evaluate how climate change could affect these groups. Results Congeneric ploidy level pairs differed significantly in niche identity, and overlap varied across genera. Eleven genera showed greater than 100% increases in habitat suitability and six genera showed almost no remaining suitable habitat in at least one future climate scenario. Conclusions With 70% of the species that showed substantial declines in projected suitable habitat being of conservation concern, we propose that future studies of these genera should be a primary focus in the NACP.

Hill, A., M. F. T. Jiménez, N. Chazot, C. Cássia‐Silva, S. Faurby, L. Herrera‐Alsina, and C. D. Bacon. 2023. Apparent effect of range size and fruit colour on palm diversification may be spurious. Journal of Biogeography. https://doi.org/10.1111/jbi.14683

Aim Fruit selection by animal dispersers with different mobility directly impacts plant geographical range size, which, in turn, may impact plant diversification. Here, we examine the interaction between fruit colour, range size and diversification rate in palms by testing two hypotheses: (1) species with fruit colours attractive to birds have larger range sizes due to high dispersal ability and (2) disperser mobility affects whether small or large range size has higher diversification, and intermediate range size is expected to lead to the highest diversification rate regardless of disperser. Location Global. Time Period Contemporary (or present). Major Taxa Studied Palms (Arecaceae). Methods Palm species were grouped based on likely animal disperser group for given fruit colours. Range sizes were estimated by constructing alpha convex hull polygons from distribution data. We examined disperser group, range size or an interaction of both as possible drivers of change in diversification rate over time in a likelihood dynamic model (Several Examined State-dependent Speciation and Extinction [SecSSE]). Models were fitted, rate estimates were retrieved and likelihoods were compared to those of appropriate null models. Results Species with fruit colours associated with mammal dispersal had larger ranges than those with colours associated with bird dispersal. The best fitting SecSSE models indicated that the examined traits were not the primary driver of the heterogeneity in diversification rates in the model. Extinction rate complexity had a marked impact on model performance and on diversification rates. Main Conclusions Two traits related to dispersal mobility, range size and fruit colour, were not identified as the main drivers of diversification in palms. Increased model extinction rate complexity led to better performing models, which indicates that net diversification should be estimated rather than speciation alone. However, increased complexity may lead to incorrect SecSSE model conclusions without careful consideration. Finally, we find palms with more mobile dispersers do not have larger range sizes, meaning other factors are more important determinants of range size.

Lima, V. P., R. A. Ferreira de Lima, F. Joner, L. D’Orangeville, N. Raes, I. Siddique, and H. ter Steege. 2023. Integrating climate change into agroforestry conservation: A case study on native plant species in the Brazilian Atlantic Forest. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14464

Designing multispecies systems with suitable climatic affinity and identifying species' vulnerability under human‐driven climate change are current challenges to achieve successful adaptation of natural systems. To address this problem, we need to (1) identify groups of species with climatic similarity under climate scenarios and (2) identify areas with high conservation value under predicted climate change.To recognize species with similar climatic niche requirements that can be grouped for mixed cropping in Brazil, we employed ecological niche models (ENMs) and Spearman's ρ for overlap. We also used prioritization algorithms to map areas of high conservation value using two Shared Socioeconomic Pathways (SSP2‐4.5 and SSP5‐8.5) to assess mid‐term (2041–2060) and long‐term (2061–2080) climate change impacts.We identified 15 species groups with finer climatic affinities at different times depicted on hierarchical clustering dendrograms, which can be combined into agroecological agroforestry systems. Furthermore, we highlight the climatically suitable areas for these groups of species, thus providing an outlook of where different species will need to be planted over time to be conserved. In addition, we observed that climate change is predicted to modify the spatial association of these groups under different future climate scenarios, causing a mean negative change in species climatic similarity of 9.5% to 13.7% under SSP2‐4.5 scenario and 9.5% to 10.5% under SSP5‐8.5, for 2041–2060 and 2061–2080, respectively.Synthesis and applications. Our findings provide a framework for agroforestry conservation. The groups of species with finer climatic affinities identified and the climatically suitable areas can be combined into agroecological productive systems, and provide an outlook of where different species may be planted over time. In addition, the conservation priority zones displaying high climate stability for each species individually and all at once can be incorporated into Brazil's conservation plans by policymakers to prioritize specific sites. Lastly, we urge policymakers, conservation organizations and donors to promote interventions involving farmers and local communities, since the species' evaluated have proven to maintain landscapes with productive forest fragments and can be conserved in different Brazilian ecosystems.

Benson, C. W., M. R. Sheltra, P. J. Maughan, E. N. Jellen, M. D. Robbins, B. S. Bushman, E. L. Patterson, et al. 2023. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genomics 24. https://doi.org/10.1186/s12864-023-09456-5

Background Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua’s diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua’s evolutionary novelty. Results We find that the diploids diverged from their common ancestor 5.5 – 6.3 million years ago and hybridized to form P. annua  ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua’s B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. Conclusions The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding .

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.