Ciência habilitada por dados de espécimes
Huang, T., J. Chen, K. E. Hummer, L. A. Alice, W. Wang, Y. He, S. Yu, et al. 2023. Phylogeny of Rubus (Rosaceae): Integrating molecular and morphological evidence into an infrageneric revision. TAXON. https://doi.org/10.1002/tax.12885
Rubus (Rosaceae), one of the most complicated angiosperm genera, contains about 863 species, and is notorious for its taxonomic difficulty. The most recent (1910–1914) global taxonomic treatment of the genus was conducted by Focke, who defined 12 subgenera. Phylogenetic results over the past 25 years suggest that Focke's subdivisions of Rubus are not monophyletic, and large‐scale taxonomic revisions are necessary. Our objective was to provide a comprehensive phylogenetic analysis of the genus based on an integrative evidence approach. Morphological characters, obtained from our own investigation of living plants and examination of herbarium specimens are combined with chloroplast genomic data. Our dataset comprised 196 accessions representing 145 Rubus species (including cultivars and hybrids) and all of Focke's subgenera, including 60 endemic Chinese species. Maximum likelihood analyses inferred phylogenetic relationships. Our analyses concur with previous molecular studies, but with modifications. Our data strongly support the reclassification of several subgenera within Rubus. Our molecular analyses agree with others that only R. subg. Anoplobatus forms a monophyletic group. Other subgenera are para‐ or polyphyletic. We suggest a revised subgeneric framework to accommodate monophyletic groups. Character evolution is reconstructed, and diagnostic morphological characters for different clades are identified and discussed. Based on morphological and molecular evidence, we propose a new classification system with 10 subgenera: R. subg. Anoplobatus, R. subg. Batothamnus, R. subg. Chamaerubus, R. subg. Cylactis, R. subg. Dalibarda, R. subg. Idaeobatus, R. subg. Lineati, R. subg. Malachobatus, R. subg. Melanobatus, and R. subg. Rubus. The revised infrageneric nomenclature inferred from our analyses is provided along with synonymy and type citations. Our new taxonomic backbone is the first systematic and complete global revision of Rubus since Focke's treatment. It offers new insights into deep phylogenetic relationships of Rubus and has important theoretical and practical significance for the development and utilization of these important agronomic crops.
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.
Lannuzel, G., L. Pouget, D. Bruy, V. Hequet, S. Meyer, J. Munzinger, and G. Gâteblé. 2022. Mining rare Earth elements: Identifying the plant species most threatened by ore extraction in an insular hotspot. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.952439
Conservation efforts in global biodiversity hotspots often face a common predicament: an urgent need for conservation action hampered by a significant lack of knowledge about that biodiversity. In recent decades, the computerisation of primary biodiversity data worldwide has provided the scientific community with raw material to increase our understanding of the shared natural heritage. These datasets, however, suffer from a lot of geographical and taxonomic inaccuracies. Automated tools developed to enhance their reliability have shown that detailed expert examination remains the best way to achieve robust and exhaustive datasets. In New Caledonia, one of the most important biodiversity hotspots worldwide, the plant diversity inventory is still underway, and most taxa awaiting formal description are narrow endemics, hence by definition hard to discern in the datasets. In the meantime, anthropogenic pressures, such as nickel-ore mining, are threatening the unique ultramafic ecosystems at an increasing rate. The conservation challenge is therefore a race against time, as the rarest species must be identified and protected before they vanish. In this study, based on all available datasets and resources, we applied a workflow capable of highlighting the lesser known taxa. The main challenges addressed were to aggregate all data available worldwide, and tackle the geographical and taxonomic biases, avoiding the data loss resulting from automated filtering. Every doubtful specimen went through a careful taxonomic analysis by a local and international taxonomist panel. Geolocation of the whole dataset was achieved through dataset cross-checking, local botanists’ field knowledge, and historical material examination. Field studies were also conducted to clarify the most unresolved taxa. With the help of this method and by analysing over 85,000 data, we were able to double the number of known narrow endemic taxa, elucidate 68 putative new species, and update our knowledge of the rarest species’ distributions so as to promote conservation measures.
Williams, C. J. R., D. J. Lunt, U. Salzmann, T. Reichgelt, G. N. Inglis, D. R. Greenwood, W. Chan, et al. 2022. African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology 37. https://doi.org/10.1029/2022pa004419
The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.
Colli-Silva, M., J. R. Pirani, and A. Zizka. 2022. Ecological niche models and point distribution data reveal a differential coverage of the cacao relatives (Malvaceae) in South American protected areas. Ecological Informatics 69: 101668. https://doi.org/10.1016/j.ecoinf.2022.101668
For many regions, such as in South America, it is unclear how well the existent protected areas network (PAs) covers different taxonomic groups and if there is a coverage bias of PAs towards certain biomes or species. Publicly available occurrence data along with ecological niche models might help to overcome this gap and to quantify the coverage of taxa by PAs ensuring an unbiased distribution of conservation effort. Here, we use an occurrence database of 271 species from the cacao family (Malvaceae) to address how South American PAs cover species with different distribution, abundance, and threat status. Furthermore, we compared the performance of online databases, expert knowledge, and modelled species distributions in estimating species coverage in PAs. We found 79 species from our survey (29% of the total) lack any record inside South American PAs and that 20 out of 23 species potentially threatened with extinction are not covered by PAs. The area covered by South American PAs was low across biomes, except for Amazonia, which had a relative high PA coverage, but little information on species distribution within PA available. Also, raw geo-referenced occurrence data were underestimating the number of species in PAs, and projections from ecological niche models were more prone to overestimating the number of species represented within PAs. We discuss that the protection of South American flora in heterogeneous environments demand for specific strategies tailored to particular biomes, including making new collections inside PAs in less collected areas, and the delimitation of more areas for protection in more known areas. Also, by presenting biasing scenarios of collection effort in a representative plant group, our results can benefit policy makers in conserving different spots of tropical environments highly biodiverse.
Chevalier, M. 2022. <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past 18: 821–844. https://doi.org/10.5194/cp-18-821-2022
Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.
Sarker, U., Y.-P. Lin, S. Oba, Y. Yoshioka, and K. Hoshikawa. 2022. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. Plant Physiology and Biochemistry 182: 104–123. https://doi.org/10.1016/j.plaphy.2022.04.011
Climate change causes environmental variation worldwide, which is one of the most serious threats to global food security. In addition, more than 2 billion people in the world are reported to suffer from serious malnutrition, referred to as ‘hidden hunger.’ Dependence on only a few crops could lead to the loss of genetic diversity and high fragility of crop breeding in systems adapting to global scale climate change. The exploitation of underutilized species and genetic resources, referred to as orphan crops, could be a useful approach for resolving the issue of adaptability to environmental alteration, biodiversity preservation, and improvement of nutrient quality and quantity to ensure food security. Moreover, the use of these alternative crops will help to increase the human health benefits and the income of farmers in developing countries. In this review, we highlight the potential of orphan crops, especially amaranths, for use as vegetables and health-promoting nutritional components. This review highlights promising diversified sources of amaranth germplasms, their tolerance to abiotic stresses, and their nutritional, phytochemical, and antioxidant values for vegetable purposes. Betalains (betacyanins and betaxanthins), unique antioxidant components in amaranth vegetables, are also highlighted regarding their chemodiversity across amaranth germplasms and their stability and degradation. In addition, we discuss the physiological functions, antioxidant, antilipidemic, anticancer, and antimicrobial activities, as well as the biosynthesis pathway, molecular, biochemical, genetics, and genomic mechanisms of betalains in detail.
Zhang, S., Y. Sun, M. Li, N. Wang, and Q. Xu. 2022. Paleovegetation and paleotemperature in North China during the mid-Holocene based on sedimentological and palynological evidence from Lake Baiyangdian. Palaeogeography, Palaeoclimatology, Palaeoecology 595: 110982. https://doi.org/10.1016/j.palaeo.2022.110982
The North China Plain is climatically sensitive and is also noted as one of the principal regions in East Asia experiencing pronounced climatic warming. We reconstructed the paleoclimate and paleoenvironment of a lake site in North China Plain during the mid-Holocene warm period, in order to provide reference data and a scientific basis for assessing possible futures changes in the ecological environment in the context of ongoing climate change. The reconstruction is based on the chronology, sedimentology and pollen assemblages of two sedimentary sequences from the Lake Baiyangdian area, which are used to determine the regional vegetation composition and paleotemperature of the hinterland of the North China Plain during the mid-Holocene. The results show that the extent and distribution of Lake Baiyangdian varied due to river channel changes, which also affected the sedimentary facies and the patterns of erosion and accumulation. The pollen assemblages from the lacustrine deposits are derived from the entire catchment of Lake Baiyangdian and they reflect regional patterns of climatic and environmental change. During the mid-Holocene (~6000–5000 yr BP), mixed broadleaf-coniferous forest dominated the western mountains and hills, intrazonal grassland developed on the alluvial fans, and lake-swamp-floodplain environments developed in the hinterland of the North China Plain. Statistical analysis of the modern distribution and climate thresholds of Ceratopteris were used to estimate the mean annual temperature (MAT) and mean January temperature (MJaT) of the Lake Baiyangdian area during the mid-Holocene, which were respectively 3.5 °C and 7.7 °C higher than today. Our findings provide reference data and a scientific basis for landscape reconstruction and paleoclimate modelling in North China.
Kinosian, S. P., and P. G. Wolf. 2022. The biology of C. richardii as a tool to understand plant evolution. eLife 11. https://doi.org/10.7554/eLife.75019
The fern Ceratopteris richardii has been studied as a model organism for over 50 years because it is easy to grow and has a short life cycle. In particular, as the first homosporous vascular plant for which genomic resources were developed, C. richardii has been an important system for studying plant evolution. However, we know relatively little about the natural history of C. richardii. In this article, we summarize what is known about this aspect of C. richardii, and discuss how learning more about its natural history could greatly increase our understanding of the evolution of land plants.
Meller, P., M. Stellmes, A. Fidelis, and M. Finckh. 2022. Correlates of geoxyle diversity in Afrotropical grasslands. Journal of Biogeography 49: 339–352. https://doi.org/10.1111/jbi.14305
Aim: Tropical old-growth grasslands are increasingly acknowledged as biodiverse ecosystems, but they are understudied in many aspects. Geoxyle species are a key component in many of these ecosystems, their belowground storage organs and bud banks are functionally diverse and contribute to the grassl…