Ciência habilitada por dados de espécimes

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography.

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Ramírez-Barahona, S. 2024. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales R. Warnock, and M. Zelditch [eds.],. Evolution.

Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage’s biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth–death process and the dispersal–extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic–Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils’ phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.

Vanderhoorn, J. M. M., J. M. Wilmshurst, S. J. Richardson, T. R. Etherington, and G. L. W. Perry. 2024. Revealing the palaeoecology of silent taxa: selecting proxy species from associations in modern vegetation data. Journal of Biogeography.

Aim Species severely under‐represented in fossil pollen records leave gaps in interpretations and reconstructions of past vegetation. These ‘silent taxa’ leave little or no trace due to low pollen production, dispersal, preservation and taxonomic resolution. An approach for including them is through associating them with other species with reliable pollen representation. Here, we demonstrate a method for selecting such a proxy species for the Holocene using modern vegetation data.LocationNew Zealand.TaxonBeilschmiedia tawa (A.Cunn.) Benth. & Hook. F. ex Kirk (Lauraceae).MethodsWe used vegetation plot data to perform a pairwise co‐occurrence analysis of the New Zealand indigenous forest metacommunity to identify species with a strong positive association with Beilschmiedia tawa (tawa), a common tree severely under‐recorded in the pollen record. For those species, we then modelled their realised climatic niches to identify species with high niche overlap. We discuss how well those species could be interpreted from the Holocene fossil pollen record based on the representation of their pollen taxa.ResultsKnightia excelsa (rewarewa; Proteaceae) is a potential proxy for B. tawa in Holocene fossil pollen records, and other, range‐limited species may provide community‐specific proxies. We show combining resampling with sub‐sampling is a robust method for reducing the high false positive rate associated with large co‐occurrence analyses (1000+ sites) by limiting the sample size to 100 sites.Main ConclusionsWe show that the palaeoecology of silent taxa can be studied via proxy species, allowing their past distributions to be better understood. We highlight the importance of modelling many aspects of the realised niche to understand the usefulness and limitations of the silent–proxy association. Future research should focus on testing the underlying assumptions of the silent–proxy relationship so that models built on modern data can confidently be applied to palaeoecological data.

Minghetti, E., P. M. Dellapé, M. Maestro, and S. I. Montemayor. 2024. Evaluating the climatic suitability of Engytatus passionarius Minghetti et al. (Heteroptera, Miridae) as a biological control agent of the invasive stinking passion flower Passiflora foetida L. in Australia through ecological niche models. Biological Control 191: 105461.

Passiflora foetida is a climbing vine, native to the Neotropical Region that is causing major economic and ecological damage in Australia, where it is rapidly spreading. Traditional control options, such as cutting, manual uprooting, and herbicide applications are only effective for local management. Currently, the plant bug Engytatus passionarius is the most promising biological control agent. Specificity tests performed in its native range in Argentina suggest it is highly specific to the plant, and it has not been observed in the field associated with other plants. As climate determines the establishment of insects, knowing if the environmental conditions suit their requirements is key to introducing a species in a region. Also, an overlap between the climatic niches of species is an indicator of similar requirements. To explore the possibilities of a successful establishment of E. passionarius in Australia, ecological niche models (ENM) were built for the plant bug and for the vine and their overlap was measured. The ENM projected to Australia recognized suitable environmental conditions for the establishment of E. passionarius in several regions where P. foetida is present, both for current and future scenarios. Moreover, the niche of the plant bug is almost completely overlapped with that of the vine. All the aforementioned evidence seems to indicate that E. passionarius has a good chance to become an effective biological control agent of P. foetida.

Wright, L. S., T. Simpkins, K. Filbee-Dexter, and T. Wernberg. 2023. Temperature sensitivity of detrital photosynthesis. Annals of Botany.

Background and Aims Kelp forests are increasingly considered blue carbon habitats for ocean-based biological carbon dioxide removal, but knowledge gaps remain in our understanding of their carbon cycle. Of particular interest is the remineralisation of detritus, which can remain photosynthetically active. Here, we study a widespread, thermotolerant kelp (Ecklonia radiata) to explore detrital photosynthesis as a mechanism underlying temperature and light as two key drivers of remineralisation. Methods We used meta-analysis to constrain the thermal optimum (Topt) of E. radiata. Temperature and light were subsequently controlled over a 119-day ex situ decomposition experiment. Flow-through experimental tanks were kept in darkness at 15 °C or under a subcompensating maximal irradiance of 8 µmol photons m−2 s−1 at 15, 20 or 25 °C. Photosynthesis of laterals (analogues to leaves) was estimated using closed-chamber oxygen evolution in darkness and under a saturating irradiance of 420 µmol photons m−2 s−1. Key Results T opt of E. radiata was 18 °C across performance variables (photosynthesis, growth, abundance, size, mass and fertility), life stages (gametophyte and sporophyte) and populations. Our models predict that a temperature of >15 °C reduces the potential for E. radiata detritus to be photosynthetically viable, hence detrital Topt ≤ 15 °C. Detritus is viable under subcompensating irradiance, where it performs better than in darkness. Comparison of net and gross photosynthesis indicates that elevated temperature primarily decreases detrital photosynthesis, whereas darkness primarily increases detrital respiration compared with optimal experimental conditions, in which detrital photosynthesis can persist for ≥119 days. Conclusions T opt of kelp detritus is ≥3 °C colder than that of the intact plant. Given that E. radiata is one of the most temperature-tolerant kelps, this suggests that photosynthesis is generally more thermosensitive in the detrital phase, which partly explains the enhancing effect of temperature on remineralisation. In contrast to darkness, even subcompensating irradiance maintains detrital viability, elucidating the accelerating effect of depth and its concomitant light reduction on remineralisation to some extent. Detrital photosynthesis is a meaningful mechanism underlying at least two drivers of remineralisation, even below the photoenvironment inhabited by the attached alga.

Rocha, J., P. J. Nunes, A. Pinto, L. Fenina, A. L. Afonso, A. R. Seixas, R. Cruz, et al. 2024. Ecological adaptation of Australian Myrtaceae through the leaf waxes analysis: Corymbia citriodora, Eucalyptus gunnii, and Eucalyptus globulus. Flora 310: 152435.

Seeking to get insight into the close relationship between plant waxes and the climatic conditions of plants’ original biomes, the leaves of three Myrtaceae from the eastern Australian-Tasmanian region (Corymbia citriodora (Hook.) K.D.Hill & L.A.S.Johnson (lemon-scented gum), Eucalyptus gunnii Hook. (cider gum), and Eucalyptus globulus Labill. (blue gum)) were selected. The present study relied on the analysis of juvenile leaf samples of the three species collected at the Botanical Garden of the University of Trás-os-Montes e Alto Douro (Portugal) during the driest and warmest period of the year (July), to ensure the same environmental conditions as the Australian species from December to February, for cider gum and blue gum, and from June to September, for lemon-scented gum. Both surfaces of the leaves of the three Myrtaceae species exhibit superhydrophobic behavior. They are covered with wax tubules, but these are thicker and the surface is smoother in the case of cider gum. From the chemical standpoint, the leaf waxes of the three species revealed a prevalence of β-diketones and sterols over alcohols, alkanes, and esters. The relative ketone/sterol concentration ratio demonstrated an environmental dynamic variation with climate, i.e., with the ombrothermic regimes. The highest concentration of β-diketone and the lowest concentration of sterols was observed for species from dryer conditions (lemon-scented gum), whereas the reverse trend was found for species from wetter conditions (cider gum and blue gum).The present work strongly suggests that the chemical composition of leaf waxes, rather than wettability, seems to be directly correlated with environmental variability at the species’ natural site. The methodology proposed here opens exciting new prospects for the investigation of the environmental dynamics of terrestrial plants.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13.

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

ter Huurne, M. B., L. J. Potgieter, C. Botella, and D. M. Richardson. 2023. Melaleuca (Myrtaceae): Biogeography of an important genus of trees and shrubs in a changing world. South African Journal of Botany 162: 230–244.

The number of naturalised and invasive woody plant species has increased rapidly in recent decades. Despite the increasing interest in tree and shrub invasions, little is known about the invasion ecology of most species. This paper explores the global movement of species in the genus Melaleuca (Myrtaceae; here including the genus Callistemon). We assess the global introduction history, distribution and biogeographic status of the genus. Various global species occurrence databases, citizen science (iNaturalist), and the literature were used.Seventy-two species [out of 386 Melaleuca species; 19%] have been introduced to at least 125 regions outside their native range. The main regions of global Melaleuca introductions are Southeast Asia, the southern parts of North America, south-eastern South America, southern Africa and Europe. The earliest record of a Melaleuca species outside of the native range of the genus is 1789. First records of Melaleuca species outside their native range were most commonly recorded in the 1960s, with records from all over the world. The main reasons for Melaleuca introductions were for use in the tea tree (pharmaceutical value) and ornamental horticulture industries. Melaleuca introductions, naturalizations and invasions are recent compared to many other woody plant taxa. Experiences in Florida and South Africa highlight the potential of Melaleuca species to spread rapidly and have significant ecological impacts. It is likely that the accumulating invasion debt will result in further naturalization and invasion of Melaleuca species in the future.

Thongsangtum, N., J. Huang, S.-F. Li, Y. Thasod, and T. Su. 2023. Calophyllum (Calophyllaceae) from late Oligocene–Early Miocene of Li Basin, northern Thailand and its biogeographic and paleoclimatic implications. Palaeoworld.

Fossils from tropical Asia, which are far from fully investigated, are important for understanding the evolution of plant diversity and the associated surrounding environment there. In this study, we report, as the first record in Thailand, the well-preserved leaf fossils of Calophyllum Linnaeus (Calophyllaceae) from the upper Oligocene–Lower Miocene lacustrine deposits in Li Basin, northern Thailand. The fossils were identified through detailed comparison with leaves of extant and fossil species. These leaf fossils are assigned to Calophyllum based on several key leaf characteristics such as oblanceolate or oblong in shape and parallel secondary veins, nearly perpendicular to the midvein, as well as secondary veins alternate, closely placed, craspedodromous, parallel, dense, and distinct on surface, forming marginal veins. Based on detailed morphological comparison, these fossil leaves are assigned to C. suraikholaensis Awasthi and Prasad, 1990 and Calophyllum sp. The discovery of Calophyllum indicates a montane subtropical to tropical climate in northern Thailand during the Oligocene–Miocene. Together with previous fossil records, these results suggest that this genus probably originated in India during the Paleogene, and spread from India to Indochina during the Neogene, leading to its modern distribution, which currently prefers tropical climates.

McCulloch-Jones, E. J., T. Kraaij, N. Crouch, and K. T. Faulkner. 2023. Assessing the invasion risk of traded alien ferns using species distribution models. NeoBiota 87: 161–189.

Risk analysis plays a crucial role in regulating and managing alien and invasive species but can be time-consuming and costly. Alternatively, combining invasion and impact history with species distribution models offers a cost-effective and time-efficient approach to assess invasion risk and identify species for which a comprehensive risk analysis should take precedence. We conducted such an assessment for six traded alien fern species, determining their invasion risk in countries where they are traded. Four of the species (Dicksonia antarctica, Dryopteris erythrosora, Lygodium japonicum, and Phlebodium aureum) showed limited global distributions, while Adiantum raddianum and Sphaeropteris cooperi had broader distributions. A. raddianum, however, was the only species found to pose a high invasion risk in two known trade countries – the USA and Australia – and requires a complete risk analysis to determine the appropriate regulatory responses. Dicksonia antarctica, Phlebodium aureum (for New Zealand), and Dryopteris erythrosora (for the USA) posed a medium risk of invasion due to the lack of evidence of impacts, and a complete risk analysis is thus deemed less crucial for these species in these countries. For other species, suitable environments were not predicted in the countries where they are traded, thus the risk of invasion is low, and a complete risk analysis is not required. For species in countries where suitable environments are predicted but no trade information or presence data are available, risk assessments are recommended to better determine the risk posed. Despite the relatively limited potential global distribution of the studied ferns relative to other major plant invaders (e.g., Pinus spp. and Acacia spp.), their history of invasion, documented impacts in pristine environments, and high propagule pressure from trade warrants concern, possibly necessitating legislative and regulatory measures in environmentally suitable regions.