Ciência habilitada por dados de espécimes

Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4

Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.

Paquette, H. A., R. T. McMullin, and Y. F. Wiersma. 2023. The importance of taxonomy for determining species distribution: a case study using the disjunct lichen Brodoa oroarctica. Botany. https://doi.org/10.1139/cjb-2023-0096

Species-focused conservation requires a thorough understanding of species’ distributions. Delineating a species’ distribution requires taxonomic knowledge and adequate occurrence data. For plants and fungi, herbaria represent a valuable source of large-scale occurrence data. Advances in digital technology mean that data from many herbarium collections worldwide are now easily accessible. However, species concepts can change over time requiring herbarium records to be re-examined and databases updated, which does not always occur synchronously across all collections. Therefore, non-critical use of these data can promote inaccuracies in understanding species distributions. Taxonomic revisions are common in understudied organisms, such as lichens. Here, we illustrate how changing taxonomy and non-critical acceptance of online data affects our understanding of disjunct distributions, using the lichen Brodoa oroarctica (Krog) Goward as an example. Defining the distribution of the arctic lichen B. oroarctica is confounded by changing taxonomy and uncertainty of herbarium records that pre-date taxonomic revisions. We review the distribution of this species in the literature and in aggregate occurrence databases, and verify herbarium specimens that represent disjunct occurrences in eastern North America to present an updated account of its distribution and frequency in eastern North America. We show that knowledge of changing species taxonomy is essential to depicting accurate species distributions.

Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737

Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.

Ripley, B. S., S. L. Raubenheimer, L. Perumal, M. Anderson, E. Mostert, B. S. Kgope, G. F. Midgley, and K. J. Simpson. 2022. CO 2 ‐fertilisation enhances resilience to browsing in the recruitment phase of an encroaching savanna tree. Functional Ecology. https://doi.org/10.1111/1365-2435.14215

CO2‐fertilisation is implicated in the widespread and significant woody encroachment of savannas due to CO2‐stimulated increases in belowground reserves that enhance sapling regrowth after fire. However, the effect of CO2 concentration ([CO2]) on tree responses to the other major disturbance in savannas, herbivory, is poorly understood. Herbivory‐responses cannot be predicted from fire‐responses, as herbivore effects occur earlier during establishment and are moderated by plant palatability and defence rather than belowground carbon accumulation.

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…