Ciência habilitada por dados de espécimes
de Jesús Hernández-Hernández, M., J. A. Cruz, and C. Castañeda-Posadas. 2020. Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences 104: 102827. https://doi.org/10.1016/j.jsames.2020.102827
Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…
Bellot, S., R. P. Bayton, T. L. P. Couvreur, S. Dodsworth, W. L. Eiserhardt, M. S. Guignard, H. W. Pritchard, et al. 2020. On the origin of giant seeds: the macroevolution of the double coconut ( Lodoicea maldivica ) and its relatives (Borasseae, Arecaceae). New Phytologist 228: 1134–1148. https://doi.org/10.1111/nph.16750
Seed size shapes plant evolution and ecosystems, and may be driven by plant size and architecture, dispersers, habitat and insularity. How these factors influence the evolution of giant seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant seeds. We generated D…
Jahanshiri, E., N. M. Mohd Nizar, T. A. S. Tengku Mohd Suhairi, P. J. Gregory, A. S. Mohamed, E. M. Wimalasiri, and S. N. Azam-Ali. 2020. A Land Evaluation Framework for Agricultural Diversification. Sustainability 12: 3110. https://doi.org/10.3390/su12083110
Shortlisting ecologically adaptable plant species can be a starting point for agricultural diversification projects. We propose a rapid assessment framework based on an ecological model that can accelerate the evaluation of options for sustainable crop diversification. To test the new model, expert-…
Goodwin, Z. A., P. Muñoz-Rodríguez, D. J. Harris, T. Wells, J. R. I. Wood, D. Filer, and R. W. Scotland. 2020. How long does it take to discover a species? Systematics and Biodiversity 18: 784–793. https://doi.org/10.1080/14772000.2020.1751339
The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …
Reginato, M., T. N. C. Vasconcelos, R. Kriebel, and A. O. Simões. 2020. Is dispersal mode a driver of diversification and geographical distribution in the tropical plant family Melastomataceae? Molecular Phylogenetics and Evolution 148: 106815. https://doi.org/10.1016/j.ympev.2020.106815
Species of plants with different life history strategies may differ in their seed dispersal mechanisms, impacting their distribution and diversification patterns. Shorter or longer distance dispersal is favored by different dispersal modes, facilitating (or constraining) population isolation, which …
Klages, J. P., U. Salzmann, T. Bickert, C.-D. Hillenbrand, K. Gohl, G. Kuhn, et al. 2020. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580: 81–86. https://doi.org/10.1038/s41586-020-2148-5
The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1,2,3,4,5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether p…
Li, M., J. He, Z. Zhao, R. Lyu, M. Yao, J. Cheng, and L. Xie. 2020. Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ 8: e8729. https://doi.org/10.7717/peerj.8729
Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…
Ringelberg, J. J., N. E. Zimmermann, A. Weeks, M. Lavin, and C. E. Hughes. 2020. Biomes as evolutionary arenas: Convergence and conservatism in the trans‐continental succulent biome A. Moles [ed.],. Global Ecology and Biogeography 29: 1100–1113. https://doi.org/10.1111/geb.13089
Aim: Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant fun…
Carrasco, J., V. Price, V. Tulloch, and M. Mills. 2020. Selecting priority areas for the conservation of endemic trees species and their ecosystems in Madagascar considering both conservation value and vulnerability to human pressure. Biodiversity and Conservation 29: 1841–1854. https://doi.org/10.1007/s10531-020-01947-1
Madagascar is one of the most biodiverse countries in Africa, due to its level of endemism and species diversity. However, the pressure of human activities threatens the last patches of natural vegetation in the country and conservation decisions are undertaken with limited data availability. In thi…
Asase, A., M. N. Sainge, R. A. Radji, O. A. Ugbogu, and A. T. Peterson. 2020. A new model for efficient, need‐driven progress in generating primary biodiversity information resources. Applications in Plant Sciences 8. https://doi.org/10.1002/aps3.11318
Premise: The field of biodiversity informatics has developed rapidly in recent years, with broad availability of large‐scale information resources. However, online biodiversity information is biased spatially as a result of slow and uneven capture and digitization of existing data resources. The Wes…