Ciência habilitada por dados de espécimes

Babin, C. H., and C. D. Bell. 2023. The effects of climate change on cytotype distributions of endemic genera in the North American Coastal Plain. Plant Ecology & Diversity. https://doi.org/10.1080/17550874.2023.2239244

Background Approximately 33% of plant species face extinction due to climate change. Polyploidisation, a process resulting in more than two complete sets of chromosomes, may be promoted by periods of climate fluctuations. Ecological niche modelling (ENM) using occurrences of endemic plants in the North American Coastal Plain (NACP) biodiversity hotspot could be used to evaluate the potential effects of climate change on cytotype distributions. Aims We used known diploid and polyploid taxa endemic to the NACP to test hypotheses that diploids and polyploids differed in habitat preferences, considerable overlap existed between cytotypes, and polyploid distributions would increase under climate change projections. Methods We examined niche identity and overlap of 28 congeneric ploidy level pairs and performed ENM to evaluate how climate change could affect these groups. Results Congeneric ploidy level pairs differed significantly in niche identity, and overlap varied across genera. Eleven genera showed greater than 100% increases in habitat suitability and six genera showed almost no remaining suitable habitat in at least one future climate scenario. Conclusions With 70% of the species that showed substantial declines in projected suitable habitat being of conservation concern, we propose that future studies of these genera should be a primary focus in the NACP.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Watts, J. L., and J. E. Watkins. 2022. New Zealand Fern Distributions from the Last Glacial Maximum to 2070: A Dynamic Tale of Migration and Community Turnover. American Fern Journal 112. https://doi.org/10.1640/0002-8444-112.4.354

The coming decades are predicated to bring widespread shifts in local, regional, and global climatic patterns. Currently there is limited understanding of how ferns will respond to these changes and few studies have attempted to model shifts in fern distribution in response to climate change. In this paper, we present a series of these models using the country of New Zealand as our study system. Ferns are notably abundant in New Zealand and play important ecological roles in early succession, canopy biology, and understory dynamics. Here we describe how fern distributions have changed since the Last Glacial Maximum to the present and predict how they will change with anthropogenic climate change – assuming no measures are taken to reduce carbon emissions. To do this, we used MaxEnt species distribution modelling with publicly available data from gbif.org and worldclim.org to predict the past, present, and future distributions of 107 New Zealand fern species. The present study demonstrates that ferns in New Zealand have and will continue to expand their ranges and migrate southward and upslope. Despite the predicted general increased range size as a result of climate change, our models predict that the majority (52%) of many species' current suitable habitats may be climatically unsuitable in 50 years, including the ecologically important group: tree ferns. Additionally, fern communities are predicted to undergo drastic shifts in composition, which may be detrimental to overall ecosystem functioning in New Zealand.

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

de Oliveira, M. H. V., B. M. Torke, and T. E. Almeida. 2021. An inventory of the ferns and lycophytes of the Lower Tapajós River Basin in the Brazilian Amazon reveals collecting biases, sampling gaps, and previously undocumented diversity. Brittonia 73: 459–480. https://doi.org/10.1007/s12228-021-09668-7

Ferns and lycophytes are an excellent group for conservation and species distribution studies because they are closely related to environmental changes. In this study, we analyzed collection gaps, sampling biases, richness distribution, and the species conservation effectiveness of protected areas i…