Ciência habilitada por dados de espécimes

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Tazikeh, S., S. Zendehboudi, S. Ghafoori, A. Lohi, and N. Mahinpey. 2022. Algal bioenergy production and utilization: Technologies, challenges, and prospects. Journal of Environmental Chemical Engineering 10: 107863. https://doi.org/10.1016/j.jece.2022.107863

Increasing demand for energy and also escalating environmental pollution show that industries cannot rely on fossil fuels, and it is necessary to adopt an alternative. In recent decades, algal bioenergy has emerged as a renewable energy source in different industries. However, algal bioenergy production is costly and faces different challenges and unknown aspects that need to be addressed. Experimental and theoretical research works have revealed that the efficiency of algal bioenergy production is influenced by several factors, including algae species, temperature, light, CO2, cultivation method, and available nutrients. Algal bioenergy production on commercial scales in cost-effective ways is the main aim of industries to compete with fossil fuels. Hence, it is vital to have a comprehensive knowledge of the previous findings and attain a suitable pathway for future studies/activities. In the present review paper, the potential of microalgae bioenergy production, influential parameters, previous experimental and theoretical studies, and different methods for microalgae biofuel production from cultivation stage to utilization are reviewed. Moreover, this work discusses the engineering activities and economic analysis of microalgae cultivation to utilization, and also useful suggestions are made for future research works. The outcomes of the present work confirm that innovative engineering methods can overcome scale-up challenging, increase the rate of production, and decrease the cost of algae bioenergy production. Hence, there is no long way to produce cost-effective algae bioenergy on commercial scales.

Chevalier, M. 2022. <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past 18: 821–844. https://doi.org/10.5194/cp-18-821-2022

Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.

Banerjee, A. K., H. Feng, W. Guo, N. E. Harms, H. Xie, X. Liang, F. Xing, et al. 2022. Glacial vicariance and oceanic circulation shape population structure of the coastal legume Derris trifoliata in the Indo‐West Pacific. American Journal of Botany 109: 1016–1034. https://doi.org/10.1002/ajb2.1851

Premise of the study The phylogeography of coastal plant species is shaped by contemporary and historical biogeographic processes. In this study, we aim to decipher the phylogeography of Derris trifoliata, a woody legume of relatively recent origin and wide distribution, in coastal areas in the Indo-West Pacific (IWP) region. Methods Genetic diversity and population structure were assessed by analyzing six nuclear and three chloroplast DNA sequences from 30 populations across the species’ range. Phylogeography was inferred by estimating gene flow, divergence time, historical population size changes, and historical habitat suitability using paleoclimatic niche-modeling. Key results High genetic diversity was observed at the species-level. The populations of three oceanic regions included in this study (i.e., Indian Ocean, South China Sea, and Pacific Ocean) formed distinct clades, and likely diverged during the late Pleistocene. Potential barriers to gene flow were identified, including the Sunda and Sahul shelves, geographic distance, and current patterns of oceanic circulation. Analysis of changes in population size supported the bottleneck model, which was strengthened by estimates of habitat suitability across paleoclimatic conditions. Conclusions The once widespread distribution of D. trifoliata was fragmented by changes in climatic suitability and biogeographic barriers that arose following sea-level changes during the Pleistocene. In addition, contemporary patterns of oceanic circulation and geographic distance between populations appear to maintain genetic differentiation across its distribution in the IWP.

Zhang, S., Y. Sun, M. Li, N. Wang, and Q. Xu. 2022. Paleovegetation and paleotemperature in North China during the mid-Holocene based on sedimentological and palynological evidence from Lake Baiyangdian. Palaeogeography, Palaeoclimatology, Palaeoecology 595: 110982. https://doi.org/10.1016/j.palaeo.2022.110982

The North China Plain is climatically sensitive and is also noted as one of the principal regions in East Asia experiencing pronounced climatic warming. We reconstructed the paleoclimate and paleoenvironment of a lake site in North China Plain during the mid-Holocene warm period, in order to provide reference data and a scientific basis for assessing possible futures changes in the ecological environment in the context of ongoing climate change. The reconstruction is based on the chronology, sedimentology and pollen assemblages of two sedimentary sequences from the Lake Baiyangdian area, which are used to determine the regional vegetation composition and paleotemperature of the hinterland of the North China Plain during the mid-Holocene. The results show that the extent and distribution of Lake Baiyangdian varied due to river channel changes, which also affected the sedimentary facies and the patterns of erosion and accumulation. The pollen assemblages from the lacustrine deposits are derived from the entire catchment of Lake Baiyangdian and they reflect regional patterns of climatic and environmental change. During the mid-Holocene (~6000–5000 yr BP), mixed broadleaf-coniferous forest dominated the western mountains and hills, intrazonal grassland developed on the alluvial fans, and lake-swamp-floodplain environments developed in the hinterland of the North China Plain. Statistical analysis of the modern distribution and climate thresholds of Ceratopteris were used to estimate the mean annual temperature (MAT) and mean January temperature (MJaT) of the Lake Baiyangdian area during the mid-Holocene, which were respectively 3.5 °C and 7.7 °C higher than today. Our findings provide reference data and a scientific basis for landscape reconstruction and paleoclimate modelling in North China.

Kinosian, S. P., and P. G. Wolf. 2022. The biology of C. richardii as a tool to understand plant evolution. eLife 11. https://doi.org/10.7554/eLife.75019

The fern Ceratopteris richardii has been studied as a model organism for over 50 years because it is easy to grow and has a short life cycle. In particular, as the first homosporous vascular plant for which genomic resources were developed, C. richardii has been an important system for studying plant evolution. However, we know relatively little about the natural history of C. richardii. In this article, we summarize what is known about this aspect of C. richardii, and discuss how learning more about its natural history could greatly increase our understanding of the evolution of land plants.

Lim, J. Y., H. Huang, A. Farnsworth, D. J. Lunt, W. J. Baker, R. J. Morley, W. D. Kissling, et al. 2021. The Cenozoic history of palms: Global diversification, biogeography and the decline of megathermal forests. Global Ecology and Biogeography 31: 425–439. https://doi.org/10.1111/geb.13436

Aim: Megathermal rain forests and mangroves are much smaller in extent today than in the early Cenozoic, primarily owing to global cooling and drying trends since the Eocene–Oligocene transition (c. 34 Ma). The general reduction of these biomes is hypothesized to shape the diversity and biogeographi…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Yi, S., C.-P. Jun, K. Jo, H. Lee, M.-S. Kim, S. D. Lee, X. Cao, and J. Lim. 2020. Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports 10. https://doi.org/10.1038/s41598-020-74994-x

Loading...