Ciência habilitada por dados de espécimes

Wang, C.-J., and J.-Z. Wan. 2021. Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. Perspectives in Ecology and Conservation 19: 475–486. https://doi.org/10.1016/j.pecon.2021.07.002

Plant invasion has been proved to threaten biodiversity conservation and ecosystem maintenance at a global scale. It is a challenge to project suitable habitat distributions of invasive plant species (IPS) for invasion risk assessment at large spatial scales. Interaction outcomes between native and …

Sitzia, T., H. Kudrnovsky, N. Müller, and B. Michielon. 2021. Biological flora of Central Europe: Myricaria germanica (L.) Desv. Perspectives in Plant Ecology, Evolution and Systematics 52: 125629. https://doi.org/10.1016/j.ppees.2021.125629

Myricaria germanica (German tamarisk or false tamarisk), Tamaricaceae, is a pioneer shrub native to the Eurasian temperate regions where it colonises gravel bars in braided rivers. Over the past 150 years, human alterations of rivers have caused its dramatic decline in Europe. This paper reviews the…

Mairal, M., S. L. Chown, J. Shaw, D. Chala, J. H. Chau, C. Hui, J. M. Kalwij, et al. 2021. Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub‐Antarctic. Molecular Ecology 31: 1649–1665. https://doi.org/10.1111/mec.16045

The link between the successful establishment of alien species and propagule pressure is well-documented. Less known is how humans influence the post-introduction dynamics of invasive alien populations. The latter requires studying parallel invasions by the same species in habitats that are differen…

Jin, W.-T., D. S. Gernandt, C. Wehenkel, X.-M. Xia, X.-X. Wei, and X.-Q. Wang. 2021. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proceedings of the National Academy of Sciences 118. https://doi.org/10.1073/pnas.2022302118

How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest…

Bontrager, M., T. Usui, J. A. Lee‐Yaw, D. N. Anstett, H. A. Branch, A. L. Hargreaves, C. D. Muir, and A. L. Angert. 2021. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 75: 1316–1333. https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

Zhang, Y., J. Chen, and H. Sun. 2021. Alpine speciation and morphological innovations: revelations from a species-rich genus in the northern hemisphere N. Rajakaruna [ed.],. AoB PLANTS 13. https://doi.org/10.1093/aobpla/plab018

Background and Aims A large number of studies have attempted to determine the mechanisms driving plant diversity and distribution on a global scale, but the diverse and endemic alpine herbs found in harsh environments, showing adaptive evolution, require more studies. Methods Here, we selected 466 s…

Saldaña‐López, A., M. Vilà, F. Lloret, J. Manuel Herrera, and P. González‐Moreno. 2021. Assembly of species’ climatic niches of coastal communities does not shift after invasion Z. Botta‐Dukát [ed.],. Journal of Vegetation Science 32. https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Allstädt, F. J., A. Koutsodendris, E. Appel, W. Rösler, T. Reichgelt, S. Kaboth-Bahr, A. A. Prokopenko, and J. Pross. 2021. Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments 101: 177–195. https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Cours, J., L. Larrieu, C. Lopez-Vaamonde, J. Müller, G. Parmain, S. Thorn, and C. Bouget. 2021. Contrasting responses of habitat conditions and insect biodiversity to pest- or climate-induced dieback in coniferous mountain forests. Forest Ecology and Management 482: 118811. https://doi.org/10.1016/j.foreco.2020.118811

Natural disturbances are major drivers of forest dynamics. However, in the current context of anthropogenic global warming, shifts in disturbance regimes are expected. Natural disturbances usually leave biological or structural legacies which are important for early-successional species. Nevertheles…

Ebersbach, J., N. Tkach, M. Röser, and A. Favre. 2020. The Role of Hybridisation in the Making of the Species-Rich Arctic-Alpine Genus Saxifraga (Saxifragaceae). Diversity 12: 440. https://doi.org/10.3390/d12110440

Evolutionary processes fuelling rapid species diversification are not yet fully understood, although their major contribution to overall patterns of plant biodiversity is well established. Hybridisation is among the least understood of these processes, despite its multifaceted role in speciation pro…