Ciência habilitada por dados de espécimes

Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z

The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.

Putra, A. R., K. A. Hodgins, and A. Fournier‐Level. 2023. Assessing the invasive potential of different source populations of ragweed (Ambrosia artemisiifolia L.) through genomically informed species distribution modelling. Evolutionary Applications. https://doi.org/10.1111/eva.13632

The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster‐specific ENMs and characterize within‐species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions.

Schertler, A., B. Lenzner, S. Dullinger, D. Moser, J. L. Bufford, L. Ghelardini, A. Santini, et al. 2023. Biogeography and global flows of 100 major alien fungal and fungus‐like oomycete pathogens. Journal of Biogeography. https://doi.org/10.1111/jbi.14755

AbstractAimSpreading infectious diseases associated with introduced pathogens can have devastating effects on native biota and human livelihoods. We analyse the global distribution of 100 major alien fungal and oomycete pathogens with substantial socio‐economic and environmental impacts and examine their taxonomy, ecological characteristics, temporal accumulation trajectories, regional hot‐ and coldspots of taxon richness and taxon flows between continents.LocationGlobal.TaxonAlien/cryptogenic fungi and fungus‐like oomycetes, pathogenic to plants or animals.MethodsTo identify over/underrepresented classes and phyla, we performed Chi2 tests of independence. To describe spatial patterns, we calculated the region‐wise richness and identified hot‐ and coldspots, defined as residuals after correcting taxon richness for region area and sampling effort via a quasi‐Poisson regression. We examined the relationship with environmental and socio‐economic drivers with a multiple linear regression and evaluated a potential island effect. Regional first records were pooled over 20‐year periods, and for global flows the links between the native range to the alien regions were mapped.ResultsPeronosporomycetes (Oomycota) were overrepresented among taxa and regional taxon richness was positively correlated with area and sampling effort. While no island effect was found, likely due to host limitations, hotspots were correlated with human modification of terrestrial land, per capita gross domestic product, temperate and tropical forest biomes, and orobiomes. Regional first records have increased steeply in recent decades. While Europe and Northern America were major recipients, about half of the taxa originate from Asia.Main ConclusionsWe highlight the putative importance of anthropogenic drivers, such as land use providing a conducive environment, contact opportunities and susceptible hosts, as well as economic wealth likely increasing colonisation pressure. While most taxa were associated with socio‐economic impacts, possibly partly due to a bias in research focus, about a third show substantial impacts to both socio‐economy and the environment, underscoring the importance of maintaining a wholescale perspective across natural and managed systems.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

Nikkel, E., D. R. Clements, D. Anderson, and J. L. Williams. 2023. Regional habitat suitability for aquatic and terrestrial invasive plant species may expand or contract with climate change. Biological Invasions. https://doi.org/10.1007/s10530-023-03139-8

The threat of invasive species to biodiversity and ecosystem structure is exacerbated by the increasingly concerning outlook of predicted climate change and other human influences. Developing preventative management strategies for invasive plant species before they establish is crucial for effective management. To examine how climate change may impact habitat suitability, we modeled the current and future habitat suitability of two terrestrial species, Geranium lucidum and Pilosella officinarum , and two aquatic species, Butomus umbellatus and Pontederia crassipes , that are relatively new invasive plant species regionally, and are currently spreading in the Pacific Northwest (PNW, North America), an area of unique natural areas, vibrant economic activity, and increasing human population. Using North American presence records, downscaled climate variables, and human influence data, we developed an ensemble model of six algorithms to predict the potential habitat suitability under current conditions and projected climate scenarios RCP 4.5, 7.0, and 8.5 for 2050 and 2080. One terrestrial species ( P. officinarum ) showed declining habitat suitability in future climate scenarios (contracted distribution), while the other terrestrial species ( G. lucidum ) showed increased suitability over much of the region (expanded distribution overall). The two aquatic species were predicted to have only moderately increased suitability, suggesting aquatic plant species may be less impacted by climate change. Our research provides a template for regional-scale modelling of invasive species of concern, thus assisting local land managers and practitioners to inform current and future management strategies and to prioritize limited available resources for species with expanding ranges.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Song, X.-J., G. Liu, Z.-Q. Qian, and Z.-H. Zhu. 2023. Niche Filling Dynamics of Ragweed (Ambrosia artemisiifolia L.) during Global Invasion. Plants 12: 1313. https://doi.org/10.3390/plants12061313

Determining whether the climatic ecological niche of an invasive alien plant is similar to that of the niche occupied by its native population (ecological niche conservatism) is essential for predicting the plant invasion process. Ragweed (Ambrosia artemisiifolia L.) usually poses serious threats to human health, agriculture, and ecosystems within its newly occupied range. We calculated the overlap, stability, unfilling, and expansion of ragweed’s climatic ecological niche using principal component analysis and performed ecological niche hypothesis testing. The current and potential distribution of A. artemisiifolia was mapped by ecological niche models to identify areas in China with the highest potential risk of A. artemisiifolia invasion. The high ecological niche stability indicates that A. artemisiifolia is ecologically conservative during the invasion. Ecological niche expansion (expansion = 0.407) occurred only in South America. In addition, the difference between the climatic and native niches of the invasive populations is mainly the result of unpopulated niches. The ecological niche model suggests that southwest China, which has not been invaded by A. artemisiifolia, faces an elevated risk of invasion. Although A. artemisiifolia occupies a climatic niche distinct from native populations, the climatic niche of the invasive population is only a subset of the native niche. The difference in climatic conditions is the main factor leading to the ecological niche expansion of A. artemisiifolia during the invasion. Additionally, human activities play a substantial role in the expansion of A. artemisiifolia. Alterations in the A. artemisiifolia niche would help explain why this species is so invasive in China.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Welk, E., and A. Oesau. 2019. Carex liparocarpos in Deutschland – ein Erstnachweis und viele Fragen. Kochia 12: 83–98. https://doi.org/10.21248/kochia.v12.43

Carex liparocarpos s. str., die Glanzfrüchtige Segge, wurde durch Albert Oesau im NSG Lennebergwald bei Mainz erstmals sicher für Deutschland nachgewiesen. Der Neufund wird hier areal- und vegetationskundlich eingeordnet und diskutiert. Dabei werden zahlreiche interessante Fakten, aber auch Fragen und Unklarheiten aufgeworfen. Die Art ist nah verwandt mit C. supina, mit der sie oft verwechselt wurde und wird. In der Ukraine ist die Abgrenzung zu C. schkuhrii (Syn. C. liparocarpos subsp. bordzilowskii) unklar. Mit C. turkestanica kommt der engere Verwandtschaftskreis als Subsektion Nitidae bis in mittelasiatische Gebirge vor. Das Hauptareal der Art wird – genauer als bisher – als submediterran-westpannonisch charakterisiert. Azonale Arealbereiche sind durch südatlantische, nordadriatische und pontische Dünenregionen repräsentiert. Mediterran-alpine, isolierte Vorposten wurden in Nordafrika bis auf ca. 30° n. Br. gefunden. In Frankreich gibt es wenige, bis auf ca. 50° n. Br. vorgeschobene, isolierte Vorposten, von denen viele gefährdet bzw. erloschen sind. C. liparocarpos s. str. besiedelt vorrangig neutral-basische Sandsteppen-, Dünen-, Fluss-Schotter- und Felserosionsstandorte und ist u. a. typisch für die Festucetalia vaginatae, Festucetalia valesiacae, Artemisio albae-Brometalia erecti, Scorzoneretalia villosae, Trachynietalia (Brachypodietalia) distachyi, Ononidetalia striatae und Artemisio-Koelerietalia. Auf Grundlage der gewonnenen Gesamtübersicht zu Verbreitung und Habitatbindung wird der Einbürgerungsstatus des Neufundes bewertet. Nach dem derzeitigem floristischen Kenntnisstand erscheint eine neophytische Einschleppung wahrscheinlich – ist aber nicht zwingend anzunehmen, da der Wuchsort in einem für die Art vegetationskundlich nahezu perfekt typischen Lebensraum liegt, der allerdings floristisch gut durchforscht ist.