Ciência habilitada por dados de espécimes
Qian, Q., D. Xu, W. Liao, and Z. Zhuo. 2024. Predicting the current and future suitable distribution range of Trilocha varians (Walker, 1855) (Lepidoptera: Bombycidae) in China. Bulletin of Entomological Research: 1–10. https://doi.org/10.1017/s0007485324000117
Trilocha varians is one of the major pests of Ficus spp. Based on 19 bioclimatic variables provided by the Worldclim, our study analysed the suitable distribution areas of T. varians under current and future climate changes (SSP1-2.6, SSP2-4.5, SSP5-8.5) for two periods (the 2050s and 2090s) using the maximum entropy algorithm (MaxEnt) model. Key environmental variables affecting the geographic distribution of T. varians were also identified, and the changes in the area of suitable range under current and future climate changes were compared. The results showed that the key environmental variables affecting the distribution of T. varians were temperature and precipitation, comprising annual mean temperature (bio1), temperature seasonality (standard deviation × 100) (bio4), precipitation of driest month (bio14), and precipitation of driest quarter (bio17). Under the current climatic conditions, the suitable distribution area of T. varians is within the range of 92°13′E–122°08′E, 18°17′N–31°55′N. The current high, medium, and low suitable areas for T. varians predicted by the MaxEnt model are 14.00 × 104, 21.50 × 104, and 71.95 × 104 km2, of which the high suitable areas are mainly distributed in southern Guangdong, southwestern Guangxi, western Taiwan, Hong Kong, and Hainan. Under different future climatic conditions, some of the high, medium, and low suitability zones for T. varians increased and some decreased, but the mass centre did not migrate significantly. The Pearl River Basin is predicted to remain the main distribution area of T. varians.
Li, D., Z. Li, Z. Liu, Y. Yang, A. G. Khoso, L. Wang, and D. Liu. 2022. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. Journal of Pest Science. https://doi.org/10.1007/s10340-022-01479-3
Climate change will cause drastic fluctuations in agricultural ecosystems, which in turn may affect global food security. We used ecological niche modeling to predict the potential distribution for four cereal aphids (i.e., Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum, and Diurphis noxia…