Ciência habilitada por dados de espécimes

Vasconcelos, T., Boyko, J. D., & Beaulieu, J. M. (2021). Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. doi:10.1111/jbi.14292 https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Kolanowska, M. (2021). The future of a montane orchid species and the impact of climate change on the distribution of its pollinators and magnet species. Global Ecology and Conservation, 32, e01939. doi:10.1016/j.gecco.2021.e01939 https://doi.org/10.1016/j.gecco.2021.e01939

The aim of this study was to evaluate the impact of global warming on suitable niches of montane orchid, Traunsteinera globosa, using ecological niche modelling approach. Additionally, the effect of various climate change scenarios on future changes in the distribution and overlap of the orchid magn…

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885 https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

López‐Delgado, J., & Meirmans, P. G. (2021). History or demography? Determining the drivers of genetic variation in North American plants. Molecular Ecology. doi:10.1111/mec.16230 https://doi.org/10.1111/mec.16230

Understanding the impact of historical and demographic processes on genetic variation is essential for devising conservation strategies and predicting responses to climate change. Recolonization after Pleistocene glaciations is expected to leave distinct genetic signatures, characterised by lower ge…

Schneider, K., Makowski, D., & van der Werf, W. (2021). Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters. doi:10.1088/1748-9326/ac2f19 https://doi.org/10.1088/1748-9326/ac2f19

Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest introduction could greatly help focus efforts on prevention and control and thus reduce societal costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction, val…

Song, H.-Z., Naugolnykh, S. V., Wu, X.-K., Liu, X.-Y., & Jin, J.-H. (2021). Fertile Woodwardia from the middle Eocene of South China and its implications for palaeogeography and palaeoclimate. Plant Diversity. doi:10.1016/j.pld.2021.09.003 https://doi.org/10.1016/j.pld.2021.09.003

The genus Woodwardia, which together with the genera Anchistea and Lorinseria comprise the subfamily Woodwardioideae of Blechnaceae, has a disjunct distribution across Central and North America, Europe and the temperate to tropical areas of Asia. Fossil records of Woodwardia occur throughout the Pal…

Erickson, K. D., & Smith, A. B. (2021). Accounting for imperfect detection in data from museums and herbaria when modeling species distributions: combining and contrasting data‐level versus model‐level bias correction. Ecography. doi:10.1111/ecog.05679 https://doi.org/10.1111/ecog.05679

The digitization of museum collections as well as an explosion in citizen science initiatives has resulted in a wealth of data that can be useful for understanding the global distribution of biodiversity, provided that the well-documented biases inherent in unstructured opportunistic data are accoun…

Stone, B. W., & Wolfe, A. D. (2021). Phylogeographic analysis of shrubby beardtongues reveals range expansions during the Last Glacial Maximum and implicates the Klamath Mountains as a hotspot for hybridization. Molecular Ecology. doi:10.1111/mec.15992 https://doi.org/10.1111/mec.15992

Quaternary glacial cycles often altered species' geographic distributions, which in turn altered the geographic structure of species' genetic diversity. In many cases, glacial expansion forced species in temperate climates to contract their ranges and reside in small pockets of suitable habitat (ref…

Lima, L. V., Oliveira, U., Almeida, T. E., Bueno, M. L., & Salino, A. (2021). Migration barriers in ferns: the case of the neotropical genus Diplopterygium (Gleicheniaceae). Plant Ecology & Diversity. doi:10.1080/17550874.2021.1890259 https://doi.org/10.1080/17550874.2021.1890259

Background: Despite the broad distribution of several species in Gleicheniaceae in the neotropical region, Diplopterygium is the only genus having a restricted distribution. Species of Gleicheniaceae occupy open (including anthropogenic) habitats and produce large amounts of wind-dispersed propagule…

Chauvel, B., Fried, G., Follak, S., Chapman, D., Kulakova, Y., Le Bourgeois, T., … Regnier, E. (2021). Monographs on invasive plants in Europe N° 5: Ambrosia trifida L. Botany Letters, 1–24. doi:10.1080/23818107.2021.1879674 https://doi.org/10.1080/23818107.2021.1879674

Ambrosia trifida L. (giant ragweed, Asteraceae) is native to the North American continent and was introduced into Europe and Asia at the end of the 19th century. In its native range, this tall annual species is common in riparian and ruderal habitats and is also a major weed in annual cropping syste…