Ciência habilitada por dados de espécimes
[NO TITLE AVAILABLE] https://doi.org/10.15446/abc.v30n1.111354
En Santander, Colombia, asociado al valle del Magdalena Medio se presentan serranías con remanentes boscosos que contrastan con las zonas deforestadas de las partes bajas. Presentamos una serie (90 especímenes de 48 especies) de la Serranía de La Paz, Betulia, catalogada en la Colección de Ornitología del Museo de Historia Natural de la Universidad Industrial de Santander (UIS-AV) y que proviene principalmente de una expedición en 2023 con el objetivo de estudiar su avifauna a partir de especímenes. La composición de especies de esta serie se comparó con la de otras series de UIS-AV recolectadas recientemente en el Magdalena Medio, y con una serie recolectada en la misma serranía en 1956 cuya información fue obtenida en el GBIF. Nuestra serie de la Serranía de La Paz comparte más especies con un área de bosque continuo en Bolívar que con fragmentos de bosque en Santander. Aunque varias especies de la Serranía de La Paz se registran en otros sitios del Magdalena Medio, nuestra serie incluye a Cotinga nattererii, Trogon rufus y Trogon caligatus que son especies con pocos especímenes para Santander que fueron recolectados hace más de 70 años, además de Euphonia concinna que representa un registro novedoso para el departamento. El 90 % de las especies recolectadas en 1956 están en UIS-AV o se registraron en 2023, pero Psarocolius wagleri, Cacicus cela y Falco sparverius, estuvieron ausentes. La Serranía de La Paz tiene especies de aves características de bosques del Magdalena Medio y puede ser un sitio apropiado para conservarlas.
Weiss, R. M., T. Haye, O. Olfert, S. Barkley, J. Gavloski, J. Tansey, J. Otani, and M. A. Vankosky. 2025. Bioclimatic analysis of cabbage seedpod weevil, Ceutorhyncus obstrictus (Marsham) (Coleoptera: Curculionidae) and canola, Brassica napus Linnaeus (Brassicaceae) responses to climate. Canadian Journal of Plant Science 105: 1–16. https://doi.org/10.1139/cjps-2024-0177
The cabbage seedpod weevil (CSW), Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae) is an important pest of brassicaceous crops, including canola ( Brassica napus Linnaeus). CSW consumes seeds of its host from inside the developing pods. It was introduced to North America from Europe and now occurs throughout the United States of America and Canada. Climate is one of the most important factors that determines species distribution and abundance. CLIMEX is a bioclimate model development application. Based on climate inputs, bioclimatic simulation models are tools that predict the potential geographic distribution and abundance of insects and plants. This study updated a previous bioclimatic model for CSW and presents a new model for canola. Validated models were used to conduct bioclimatic analysis of both species, the results of which provide a better understanding of how climate affects spatial distribution and abundance of CSW and the distribution and yield of canola. Application of incremental temperature and moisture scenarios were used to predict the spatial relationship of CSW risk and canola yield. We anticipate that the canola model will be applied to future bioclimatic studies of pests and beneficial insects of canola. Both the CSW and canola model can be used in climate change studies using datasets for predicted future climates.
Roberts, J., and S. Florentine. 2025. Current and future management challenges for globally invasive grasses, with special reference to Echinochloa crus‐galli, Panicum capillare and Sorghum halepense. Weed Research 65. https://doi.org/10.1111/wre.70005
Without appropriate and ongoing management interventions, weeds will continue to economically and environmentally disadvantage agricultural and natural ecosystems. For these management strategies to have long‐term sustained success, they need to carefully consider the biological aspects of the targeted weed. These strategies will also need to consider potential adaptations evolved by the targeted weed in response to a range of selection pressures imposed by anthropogenetic factors, climate change, changing environmental conditions, and inappropriate or unsuccessful management regimes. One group of weeds that has been observed to readily adapt to a wide range of conditions and has shown considerable challenges in their management is invasive grasses. Adding to these challenges is that several invasive grasses have also developed resistance to a range of herbicide modes of action, which, to date, has been one of the most commonly used methods of control. To address these challenges, this review explores the biology and ecology of the globally invasive annuals Echinochloa crus‐galli (Barnyard grass) and Panicum capillare (Witchgrass), and the perennial Sorghum halepense (Johnson grass) to identify (i) the most suitable management options for their control and (ii) potential research gaps that may assist in the future management direction of these species. Based on the findings of this review, it is clear that an integrated management approach that targets different aspects of the plant's biology, in combination with early detection and treatment and ongoing surveillance, is necessary for the long‐term control of these species. Although a combination of methods appears promising, further investigation still is required to evaluate their efficiency and long‐term success in a changing environment, all of which are further discussed within this review.
Ordoñez, J. C., C. Tovar, B. E. Walker, J. Wheeler, S. Ayala-Ruano, K. Aguirre-Carvajal, S. M. McMahon, and F. Cuesta. 2025. Phenological patterns of tropical mountain forest trees across the neotropics: evidence from herbarium specimens. Proceedings of the Royal Society B: Biological Sciences 292. https://doi.org/10.1098/rspb.2024.2748
The flowering phenology of many tropical mountain forest tree species remains poorly understood, including flowering synchrony and its drivers across neotropical ecosystems. We obtained herbarium records for 427 tree species from a long-term monitoring transect on the northwestern Ecuadorian Andes, sourced from the Global Biodiversity Information Facility and the Herbario Nacional del Ecuador. Using machine learning algorithms, we identified flowering phenophases from digitized specimen labels and applied circular statistics to build phenological calendars across six climatic regions within the neotropics. We found 47 939 herbarium records, of which 14 938 were classified as flowering by Random Forest Models. We constructed phenological calendars for six regions and 86 species with at least 20 flowering records. Phenological patterns varied considerably across regions, among species within regions, and within species across regions. There was limited interannual synchronicity in flowering patterns within regions primarily driven by bimodal species whose flowering peaks coincided with irradiance peaks. The predominantly high variability of phenological patterns among species and within species likely confers adaptative advantages by reducing interspecific competition during reproductive periods and promoting species coexistence in highly diverse regions with little or no seasonality.
Pan, Y., C. Fu, C. Tian, H. Zhang, X. Wang, and M. Li. 2025. Unraveling the Impact of Environmental Factors and Evolutionary History on Species Richness Patterns of the Genus Sorbus at Global Level. Plants 14: 338. https://doi.org/10.3390/plants14030338
Understanding the drivers of species richness patterns is a major goal of ecology and evolutionary biology, and the drivers vary across regions and taxa. Here, we assessed the influence of environmental factors and evolutionary history on the pattern of species richness in the genus Sorbus (110 species). We mapped the global species richness pattern of Sorbus at a spatial resolution of 200 × 200 km, using 10,652 specimen records. We used stepwise regression to assess the relationship between 23 environmental predictors and species richness and estimated the diversification rate of Sorbus based on chloroplast genome data. The effects of environmental factors were explained by adjusted R2, and evolutionary factors were inferred based on differences in diversification rates. We found that the species richness of Sorbus was highest in the Hengduan Mountains (HDM), which is probably the center of diversity. Among the selected environmental predictors, the integrated model including all environmental predictors had the largest explanatory power for species richness. The determinants of species richness show regional differences. On the global and continental scale, energy and water availability become the main driving factors. In contrast, climate seasonality is the primary factor in the HDM. The diversification rate results showed no significant differences between HDM and non-HDM, suggesting that evolutionary history may have limited impact on the pattern of Sorbus species richness. We conclude that environmental factors play an important role in shaping the global pattern of Sorbus species richness, while diversification rates have a lesser impact.
Brock, J. M. R., A. M. Bellvé, and B. R. Burns. 2025. Marcescence and prostrate growth in tree ferns are adaptations to cold tolerance. Ecography. https://doi.org/10.1111/ecog.07362
Cold tolerance strategies in plants vary from structural to biochemical permitting many plants to survive and grow on sites that experience freezing conditions intermittently. Although tree ferns occur predominantly across the tropics, they also occur in temperate zones and occasionally in areas that experience sub‐zero temperatures, and how these large ferns survive freezing conditions is unknown. Many temperate tree fern taxa are marcescent – retaining whorls of dead fronds encircling the upper trunk – or develop short or prostrate trunks, possibly to insulate against frost damage to their trunks and growing crowns. We asked the following questions: 1) do global growth patterns and traits of tree ferns respond to freezing conditions associated with latitude and elevation, 2) do growth patterns of tree ferns in New Zealand vary along a temperature‐related gradient, and 3) do marcescent tree fern skirts insulate the growing crown from sub‐zero temperatures? To establish what morphological adaptations permitted the Cyatheales to occur in biomes that experience intermittent sub‐zero temperatures and frost, we 1) reviewed the global distributions of these structural and morphological traits within the tree ferns (Cyatheales); 2) assessed the patterns of tree fern marcescence, and other traits potentially associated with cold tolerance (no trunk, prostrate, short‐trunked) of nine taxa of the Cyatheales along environmental gradients across New Zealand; and 3) conducted a field experiment to assess the thermal insulation properties of tree fern marcescent skirts. We identified significant trends among growth forms, marcescence, and environmental gradients consistent with our hypothesis that these are adaptations to tolerate cold. Our field experiments provide quantitative evidence that marcescent skirts have a strong insulating effect on tree fern trunks. The Cyatheales have evolved several strategies to protect the pith cores of their trunks from extreme cold temperatures in temperate forests allowing them to capture niche space in environments beyond the tropics.
Chukwuma, E. C., and L. T. Mankga. 2025. A MaxEnt model for estimating suitable habitats for some important Pelargonium species in South Africa. Journal for Nature Conservation 84: 126845. https://doi.org/10.1016/j.jnc.2025.126845
Accessing the rich biodiversity in tropical ecosystems has been of great interest to scientists across the globe. While several species have been underutilized despite their wide distribution, many others are faced with continuous population decline across their native range. Here, we amassed occurrence data and environmental variables to estimate the spatial distribution and habitat suitability of six important Pelargonium species whose conservation status in South Africa has been of concern. These were combined and used to project the future habitats under 2 Global Climate Models (GCMs) and 2 Scenarios (RCP 4.5 & 8.5). We overlayed our area maps and conducted a gap analysis to identify priority areas for the conservation of our focal species. Results showed a distribution pattern driven by temperature and precipitation, and unstable suitable areas by the years 2050 and 2070. Five temperature and precipitation variables (Bio2, Bio4, Bio12, Bio14, and Bio18) were identified as primary contributors to the habitat suitability of the selected Pelargonium species. Our model evaluation demonstrated a strong performance, with an AUC score >0.8, providing robust support for its replicability in monitoring the spatial distribution of other related taxa. We identified key areas for conservation activities in a bid to expand the current known habitats of the species in focus. While we leveraged SDM approach for explaining the area of occupancy and the spatial extent of Pelargonium species across in South Africa, we posit that attention should be drawn to the preservation of the remaining populations of the species and their associated habitats, towards mitigating their extinction.
Liu, H., X. Feng, Y. Zhao, G. Lv, C. Zhang, Aruhan, T.-A. Damba, et al. 2024. Pharmacophylogenetic relationships of genus Dracocephalum and its related genera based on multifaceted analysis. Frontiers in Pharmacology 15. https://doi.org/10.3389/fphar.2024.1449426
The Lamiaceae genus Dracocephalum, with over 30 species, is believed to have considerable medicinal properties and is widely used in Eurasian ethnomedicine. Numerous studies have researched on the geographical distribution, metabolite identification, and bioactivity of Dracocephalum species, especially amidst debates concerning the taxonomy of its closely related genera Hyssopus and Lallemantia. These discussions present an opportunity for pharmacophylogenetic studies of these medicinal plants. In this review, we collated extensive literature and data to present a multifaceted view of the geographical distribution, phylogenetics, phytometabolites and chemodiversity, ethnopharmacological uses, and pharmacological activities of Dracocephalum, Hyssopus, and Lallemantia. We found that these genera were concentrated in Europe, with species adapted to various climatic zones. These genera shared close phylogenetic relationships, with Dracocephalum and Hyssopus displaying intertwined patterns in the phylogenetic tree. Our review assessed more than 900 metabolites from these three genera, with terpenoids and flavonoids being the most abundant. Researchers have recently identified novel metabolites within Dracocephalum, expanding our understanding of its chemical constituents. Ethnopharmacologically, these genera have been traditionally used for treating respiratory, liver and gall bladder diseases. Extracts and metabolites from these genera exhibit a range of pharmacological activities such as hepatoprotective, anti-inflammation, antimicrobial action, anti-hyperlipidaemia, and anti-tumour properties. By integrating phylogenetic analyses with network pharmacology, we explored the intrinsic links between metabolite profiles, traditional efficacy, and modern pharmacology of Dracocephalum and its related genera. This study contributes to the discovery of potential medicinal value from closely related species of Dracocephalum and aids in the development and sustainable use of medicinal plant resources.
Hagelstam-Renshaw, C., J. J. Ringelberg, C. Sinou, W. Cardinal-McTeague, and A. Bruneau. 2024. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. Brazilian Journal of Botany 48. https://doi.org/10.1007/s40415-024-01058-z
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.
Streiff, S. J. R., E. O. Ravomanana, M. Rakotoarinivo, M. Pignal, E. P. Pimparé, R. H. J. Erkens, and T. L. P. Couvreur. 2024. High-quality herbarium-label transcription by citizen scientists improves taxonomic and spatial representation of the tropical plant family Annonaceae. Adansonia 46. https://doi.org/10.5252/adansonia2024v46a18
Herbarium specimens provide an important and central resource for biodiversity research. Making these records digitally available to end-users represents numerous challenges, in particular, transcribing metadata associated with specimen labels. In this study, we used the citizen science initiative ‘Les Herbonautes’ and the Récolnat network to transcribe specific data from all herbarium specimen labels stored at the Muséum national d’Histoire naturelle in Paris of the large tropical plant family Annonaceae. We compared this database with publicly available global biodiversity repository data and expert checklists. We investigated spatial and taxonomic advances in data availability at the global and country scales. A total of 20 738 specimens were transcribed over the course of more than two years contributing to and significantly extending the previously available specimen and species data for Annonaceae worldwide. We show that several regions, mainly in Africa and South East Asia not covered by online global datasets, are uniquely available in the P herbarium, probably linked to past history of the museum’s botanical exploration. While acknowledging the challenges faced during the transcription of historic specimens by citizen scientists, this study highlights the positive impact of adding records to global datasets both in space and time. This is illustrative for researchers, collection managers, policy makers as well as funders. These datasets will be valuable for numerous future studies in biodiversity research, including ecology, evolution, conservation and climate change science.