Ciência habilitada por dados de espécimes

Zhao, Z., X. Feng, Y. Zhang, Y. Wang, and Z. Zhou. 2023. Species richness, endemism, and conservation of wild Rhododendron in China. Global Ecology and Conservation 41: e02375.

This study aimed to identify the main factors driving species richness and endemism patterns of Chinese wild Rhododendron as well as to assess the hotspots of species diversity and their conservation status. We initially mapped the species richness and endemism (expressed by weighted endemism) patterns of 546 wild Rhododendron in China in 100 × 100 km grids using 13,969 occurrence records. Subsequently, the effects of environmental variables on species richness and endemism patterns were assessed using regression models, and hotspots were identified based on the areas overlapping in 10% of the grids with the highest species richness and endemism. Finally, the conservation status of the hotspots was evaluated via gap analysis. The key environmental variables affecting species richness and endemism patterns differed. Species richness patterns were significantly influenced by moisture index, whereas endemism patterns were significantly influenced by elevation range. Moreover, the following five species diversity hotspots were identified: southern Xizang, Hengduan Mountains, south-central Sichuan, eastern Yungui Plateau, and central Gansu; however, these hotspots are not fully covered by the existing nature reserves. Our results indicate that the establishment of nature reserves should be actively promoted to effectively protect wild Rhododendron in hotspots with a conservation gap.

Zhang, X., X. Ci, J. Hu, Y. Bai, A. H. Thornhill, J. G. Conran, and J. Li. 2022. Riparian areas as a conservation priority under climate change. Science of The Total Environment: 159879.

Identifying climatic refugia is important for long-term conservation planning under climate change. Riparian areas have the potential to provide climatic refugia for wildlife, but literature remains limited, especially for plants. This study was conducted with the purpose of identifying climatic refugia of plant biodiversity in the portion of the Mekong River Basin located in Xishuangbanna, China. We first predicted the current and future (2050s and 2070s) potential distribution of 50 threatened woody species in Xishuangbanna by using an ensemble of small models, then stacked the predictions for individual species to derive spatial biodiversity patterns within each 10 × 10 km grid cell. We then identified the top 17 % of the areas for spatial biodiversity patterns as biodiversity hotspots, with climatic refugia defined as areas that remained as biodiversity hotspots over time. Stepwise regression and linear correlation were applied to analyze the environmental correlations with spatial biodiversity patterns and the relationships between climatic refugia and river distribution, respectively. Our results showed potential upward and northward shifts in threatened woody species, with range contractions and expansions predicted. The spatial biodiversity patterns shift from southeast to northwest, and were influenced by temperature, precipitation, and elevation heterogeneity. Climatic refugia under climate change were related closely to river distribution in Xishuangbanna, with riparian areas identified that could provide climatic refugia. These refugial zones are recommended as priority conservation areas for mitigating the impacts of climate change on biodiversity. Our study confirmed that riparian areas could act as climatic refugia for plants and emphasizes the conservation prioritization of riparian areas within river basins for protecting biodiversity under climate change.

Yu, J., Y. Niu, Y. You, C. J. Cox, R. L. Barrett, A. Trias‐Blasi, J. Guo, et al. 2022. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus (Vitaceae), highlighting speciation dynamics in the Himalayan‐Hengduan Mountains. New Phytologist.

Hybridization caused by frequent environmental changes can lead to both species diversification (speciation) and speciation reversal (despeciation), but the latter has rarely been demonstrated. Parthenocissus, a genus with its trifoliolate lineage in the Himalayan‐Hengduan Mountains (HHM) region showing perplexing phylogenetic relationships, provides an opportunity for investigating speciation dynamics based on integrated evidence.We investigated phylogenetic discordance and reticulate evolution in Parthenocissus based on rigorous analyses of plastome and transcriptome data. We focussed on reticulations in the trifoliolate lineage in the HHM region using a population‐level genome resequencing dataset, incorporating evidence from morphology, distribution, and elevation.Comprehensive analyses confirmed multiple introgressions within Parthenocissus in a robust temporal‐spatial framework. Around the HHM region, at least three hybridization hotspots were identified, one of which showed evidence of ongoing speciation reversal.We present a solid case study using an integrative methodological approach to investigate reticulate evolutionary history and its underlying mechanisms in plants. It demonstrates an example of speciation reversal through frequent hybridizations in the HHM region, which provides new perspectives on speciation dynamics in mountainous areas with strong topographic and environmental heterogeneity.

Aguirre‐Liguori, J. A., A. Morales‐Cruz, and B. S. Gaut. 2022. Evaluating the persistence and utility of five wild Vitis species in the context of climate change. Molecular Ecology.

Crop wild relatives (CWRs) have the capacity to contribute novel traits to agriculture. Given climate change, these contributions may be especially vital for the persistence of perennial crops, because perennials are often clonally propagated and consequently do not evolve rapidly. By studying the landscape genomics of samples from five Vitis CWRs (V. arizonica, V. mustangensis, V. riparia, V. berlandieri and V. girdiana) in the context of projected climate change, we addressed two goals. The first was to assess the relative potential of different CWR accessions to persist in the face of climate change. By integrating species distribution models with adaptive genetic variation, additional genetic features such as genomic load and a phenotype (resistance to Pierce’s Disease), we predicted that accessions from one species (V. mustangensis) are particularly well‐suited to persist in future climates. The second goal was to identify which CWR accessions may contribute to bioclimatic adaptation for grapevine (V. vinifera) cultivation. To do so, we evaluated whether CWR accessions have the allelic capacity to persist if moved to locations where grapevines (V. vinifera) are cultivated in the United States. We identified six candidates from V. mustangensis and hypothesized that they may prove useful for contributing alleles that can mitigate climate impacts on viticulture. By identifying candidate germplasm, this work takes a conceptual step toward assessing the genomic and bioclimatic characteristics of CWRs.

Coca‐de‐la‐Iglesia, M., N. G. Medina, J. Wen, and V. Valcárcel. 2022. Evaluation of the tropical‐temperate transitions: An example of climatic characterization in the Asian Palmate group of Araliaceae. American Journal of Botany.

(no abstract available)

Woods, E. C., and S. E. Sultan. 2022. Post‐introduction evolution of a rapid life‐history strategy in a newly invasive plant. Ecology.

A central question in invasion biology is whether adaptive trait evolution following species introduction promotes invasiveness. A growing number of common‐garden experiments document phenotypic differences between native‐ and introduced‐range plants, suggesting that adaptive evolution in the new range may indeed contribute to the success of invasive plants. Yet these studies are often subject to methodological pitfalls, resulting in weak evidence for post‐introduction adaptive trait evolution and leaving uncertain its role in the invasion process. In a common‐garden glasshouse study, we compared the growth, life‐history, and reproductive traits of 35 native‐ and introduced‐range Polygonum cespitosum populations. We used complementary approaches including climate‐matching, standardizing parental conditions, selection analysis, and testing for trait‐environment relationships to determine whether traits that increase invasiveness adaptively evolved in the species' new range. We found that the majority of introduced‐range populations exhibited a novel trait syndrome consisting of a fast‐paced life history and concomitant sparse, reduced growth form. Selection analysis confirmed that this trait syndrome led to markedly higher fitness (propagule production) over a limited growing season characteristic of regions within the introduced range. Additionally, several growth and reproductive traits showed temperature‐based clines consistent with adaptive evolution in the new range. Combined, these results indicate that, subsequent to its introduction to North America over 100 generations ago, P. cespitosum has evolved key traits that maximize propagule production. These changes may in part explain the species' recent transition to invasiveness, illustrating how post‐introduction evolution may contribute to the invasion process.

Pérez, G., M. Vilà, and B. Gallardo. 2022. Potential impact of four invasive alien plants on the provision of ecosystem services in Europe under present and future climatic scenarios. Ecosystem Services 56: 101459.

Invasive alien species (IAS) are one of the main threats to biodiversity conservation, with significant socio-economic and ecological impacts as they disrupt ecosystem services and compromise human well-being. Global change may exacerbate the impacts of IAS, since rising temperatures and human activities favour their introduction and range expansion. Therefore, anticipating the impacts of biological invasions is crucial to support decision-making for their management. In this work, the potential impacts of four invasive alien plant species: Ailanthus altissima, Baccharis halimifolia, Impatiens glandulifera and Pueraria montana, on the provision of three ecosystem services in Europe were evaluated under current and future climate change scenarios. Using a risk analysis protocol, we determined that the most affected services are food provisioning, soil erosion regulation and the maintenance of biological diversity. To evaluate future impacts, species distribution models were calibrated using bioclimatic, environmental and human impact variables. We found that most of continental Europe is suitable for the establishment of A. altissima, B. halimifolia and I. glandulifera, while the potential distribution of P. montana is more limited. Models anticipate a shift in the distribution range for the species towards the north and east of Europe under future scenarios. Bivariate analysis allowed the identification of trends for future impacts in ecosystem services by simultaneously visualising the potential distribution of invasive species and the provision of ecosystem services. Our models project an increase in critical and high impact areas on the analysed ecosystem services, with Western Europe and the British Isles as the most affected regions. In comparison, lower impacts are projected for the Mediterranean region, likely as a consequence of the northwards expansion of invaders. Measures need to be taken to mitigate the expansion and impact of invasive species as our work shows that it can jeopardise the provision of three key services in Europe.

Zhao, J., X. Yu, W. J. Kress, Y. Wang, Y. Xia, and Q. Li. 2022. Historical biogeography of the gingers and its implications for shifts in tropical rain forest habitats. Journal of Biogeography 49: 1339–1351.

Aim The relationships between biome shifts and global environmental changes in temperate zone habitats have been extensively explored; yet, the historical dynamics of taxa found in the tropical rain forest (TRF) remain poorly known. This study aims to reconstruct the relationships between tropical rain forest shifts and global environmental changes through the patterns of historical biogeography of a pantropical family of monocots, the Zingiberaceae. Location Global. Taxon Zingiberaceae. Methods We sampled DNA sequences (nrITS, trnK, trnL-trnF and psbA-trnH) from GenBank for 77% of the genera, including 30% of species, in the Zingiberaceae. Global fossil records of the Zingiberaceae were collected from literatures. Rates of speciation, extinction and diversification were estimated based on phylogenetic data and fossil records through methods implemented in BAMM. Ancestral ranges were estimated using single-tree BioGeoBEARS and multiple-trees BioGeoBEARS in RASP. Dispersal rate through time and dispersal rate among regions were calculated in R based on the result of ancestral estimation. Results The common ancestor of the Zingiberaceae likely originated in northern Africa during the mid-Cretaceous, with later dispersal to the Asian tropics. Indo-Burma, rather than Malesia, was likely a provenance of the common ancestor of Alpinioideae–Zingiberoideae. Several abrupt shifts of evolutionary rates from the Palaeocene were synchronized with sudden global environmental changes. Main conclusions Integrating phylogenetic patterns with fossil records suggests that the Zingiberaceae dispersed to Asia through drift of the Indian Plate from Africa in the late Palaeocene. Formation of island chains, land corridors and warming temperatures facilitated the emigration of the Zingiberaceae to a broad distribution across the tropics. Moreover, dramatic fluctuations of the speciation rate of Zingiberoideae appear to have been synchronized with global climate fluctuations. In general, the evolutionary history of the Zingiberaceae broadens our understanding of the association between TRF shifts in distribution and past global environmental changes, especially the origin of TRF in Southeast Asia.

Ramirez-Villegas, J., C. K. Khoury, H. A. Achicanoy, M. V. Diaz, A. C. Mendez, C. C. Sosa, Z. Kehel, et al. 2022. State of ex situ conservation of landrace groups of 25 major crops. Nature Plants 8: 491–499.

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation. By analysing the state of representation of traditional varieties of 25 major crops in ex situ repositories, this study demonstrates conservation progress made over more than a half-century and identifies the gaps remaining to be filled.

Bywater‐Reyes, S., R. M. Diehl, A. C. Wilcox, J. C. Stella, and L. Kui. 2022. A Green New Balance: Interactions among riparian vegetation plant traits and morphodynamics in alluvial rivers. Earth Surface Processes and Landforms 47: 2410–2436.

The strength of interactions between plants and river processes is mediated by plant traits and fluvial conditions, including above‐ground biomass, stem density and flexibility, channel and bed material properties, and flow and sediment regimes. In many rivers, concurrent changes in 1) the composition of riparian vegetation communities as a result of exotic species invasion and 2) shifts in hydrology have altered physical and ecological conditions in a manner that has been mediated by feedbacks between vegetation and morphodynamic processes. We review how Tamarix, which has invaded many U.S. Southwest waterways, and Populus species, woody pioneer trees that are native to the region, differentially affect hydraulics, sediment transport, and river morphology. We draw on flume, field, and modeling approaches spanning the individual seedling to river‐corridor scales. In a flume study, we found differences in the crown morphology, stem density, and flexibility of Tamarix compared to Populus influenced near‐bed flow velocities in a manner that favored aggradation associated with Tamarix. Similarly, at the patch and corridor scales, observations confirmed increased aggradation with increased vegetation density. Furthermore, long‐term channel adjustments were different for Tamarix‐ versus Populus‐dominated reaches, with faster and greater geomorphic adjustments for Tamarix. Collectively, our studies show how plant‐trait differences between Tamarix and Populus, from individual seedlings to larger spatial and temporal scales, influence the co‐adjustment of rivers and riparian plant communities. These findings provide a basis for predicting changes in alluvial riverine systems which we conceptualize as a Green New Balance model that considers how channels may adjust to changes in plant traits and community structure in additional to alterations in flow and sediment supply. We offer suggestions regarding how the Green New Balance can be used in management and invasive species management.