Bionomia will be offline 2024-05-19 12:00 UTC for 1 hr to refresh data from the Global Biodiversity Information Facility.

Ciência habilitada por dados de espécimes

Scarpetta, S. G. 2024. A Palaeogene stem crotaphytid ( Aciprion formosum ) and the phylogenetic affinities of early fossil pleurodontan iguanians. Royal Society Open Science 11. https://doi.org/10.1098/rsos.221139

Pleurodonta is an ancient, diverse clade of iguanian lizard distributed primarily in the Western Hemisphere. Although the clade is a frequent subject of systematic research, phylogenetic resolution among the major pleurodontan clades is elusive. That uncertainty has complicated the interpretations of many fossil pleurodontans. I describe a fossil skull of a pleurodontan lizard from the Palaeogene of Wyoming that was previously allocated to the puzzling taxon Aciprion formosum , and provide an updated morphological matrix for iguanian lizards. Phylogenetic analyses using Bayesian inference demonstrate that the fossil skull is the oldest and first definitive stem member of Crotaphytidae (collared and leopard lizards), establishing the presence of that clade in North America during the Palaeogene. I also discuss new or revised hypotheses for the relationships of several early pleurodontans. In particular, I examine potential evidence for crown-Pleurodonta in the Cretaceous of Mongolia ( Polrussia ), stem Pleurodonta in the Cretaceous of North America ( Magnuviator ) and a stem anole in the Eocene of North America ( Afairiguana ). I suggest that the placement of the fossil crotaphytid is stable to the uncertain phylogeny of Pleurodonta, but recognize the dynamic nature of fossil diagnosis and the potential for updated systematic hypotheses for the other fossils analysed here.

Gherghel, I., and R. A. Martin. 2024. Biotic interactions vary across species’ ranges and are likely conserved through geological time. Journal of Biogeography. https://doi.org/10.1111/jbi.14794

Aim The evolutionary interactions between western spadefoot toads (genus Spea) represent a textbook example of character displacement, facilitated by dietary specialization of one Spea species on fairy shrimp (Anostraca) when all three co‐occur. The aim of this study is to understand the covariation between predator (Spea) and prey (Anostraca) range shifts in response to climate change oscillations, and whether biotic interactions can be used to project species distribution models on different time scales when studying species with dietary specialization. Taxon: Amphibia: Spea spp. and Crustacea: Anostraca.LocationNorth America.MethodsUsing multiple modelling techniques, we first estimated the potential distribution of central and western North American fairy shrimp species (Crustacea: Anostraca) and two western spadefoot toad species (Spea bombifrons and Spea multiplicata). We then created a shrimp species richness map by aggregating individual species estimates. Third, we studied the relationship between the probability of spadefoot toad presence and fairy shrimp species richness during the present and Last Glacial Maximum conditions. Finally, we estimated the strength and direction of the co‐occurrence between spadefoot toads and fairy shrimp sampled at the level of entire predicted range and at the regional level (allopatric and sympatric).ResultsFirst, the same abiotic environmental variables shape spadefoot toad and fairy shrimp species' distributions in central and western North America across time. Second, areas of sympatry of Spea bombifrons and Spea multiplicata correspond with dry conditions and higher shrimp richness. Finally, the spatial patterns of predator–prey co‐occurrence are highly variable across geography, forming a spatial mosaic over the species' ranges.Main ConclusionPredator–prey relationships form a spatial mosaic across geography and species ranges. Including biotic interactions into species distribution estimates for organisms with dietary specialization is highly recommended. Biotic interactions can be projected across different time frames for organisms with dietary specialization as they are likely conserved.

Xiao, S., S. Li, J. Huang, X. Wang, M. Wu, R. Karim, W. Deng, and T. Su. 2024. Influence of climate factors on the global dynamic distribution of Tsuga (Pinaceae). Ecological Indicators 158: 111533. https://doi.org/10.1016/j.ecolind.2023.111533

Throughout the Quaternary period, climate change has significantly influenced plant distribution, particularly affecting species within the genus Tsuga (Endl.) Carrière. This climatic impact ultimately led to the extinction of all Tsuga species in Europe. Today, there are ten recognized species of Tsuga worldwide, one of listed as a vulnerable species and four as near-threatened species. The genus Tsuga exhibits a disjunctive distribution in East Asia (EA), eastern North America (ENA), and western North America (WNA). It is crucial to comprehend the mechanisms underlying these distributional changes and to identify key climate variables to develop effective conservation strategies for Tsuga under future climate scenarios. In this study, we applied the maximum entropy (MaxEnt) model by combining distribution data for Tsuga with abundant pollen fossil data. Our objective was to investigate the climate factors that shape the distribution of Tsuga, identify climate thresholds, and elucidate distribution dynamics in the context of significant climate changes over the past 1070 thousand years (ka). Our findings highlight the pivotal role of precipitation as the key climate factor affecting the distribution of Tsuga. Specifically, in EA, summer precipitation was the key driver, while in North America (NA), winter precipitation exerted greater importance. Moreover, we observed similarities in climatic requirements between Tsuga species in Europe and EA, and declines in summer precipitation and winter temperature were major factors contributing to the extinction of Tsuga species in Europe. Quaternary glacial and interglacial fluctuations exerted substantial impacts on Tsuga distribution dynamics. The disappearance of Tsuga species in the Korean Peninsula may have occurred during the LGM (Last Glacial Maximum). The potential suitable area for Tsuga species in EA expanded during the cold periods, while in NA, it contracted. In the future, climate change may result Tsuga distribution area contraction in both the EA and NA. Our study has identified distinct response patterns of Tsuga in various geographic regions to Quaternary climate change and offers corresponding suggestions for Tsuga conservation. In the future, it will be imperative to prioritize the conservation of natural Tsuga distributions in EA and NA, with a focus on the impacts of precipitation fluctuation on the dynamic distribution of this genus.

Putra, A. R., K. A. Hodgins, and A. Fournier‐Level. 2023. Assessing the invasive potential of different source populations of ragweed (Ambrosia artemisiifolia L.) through genomically informed species distribution modelling. Evolutionary Applications. https://doi.org/10.1111/eva.13632

The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster‐specific ENMs and characterize within‐species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions.

Schertler, A., B. Lenzner, S. Dullinger, D. Moser, J. L. Bufford, L. Ghelardini, A. Santini, et al. 2023. Biogeography and global flows of 100 major alien fungal and fungus‐like oomycete pathogens. Journal of Biogeography. https://doi.org/10.1111/jbi.14755

AbstractAimSpreading infectious diseases associated with introduced pathogens can have devastating effects on native biota and human livelihoods. We analyse the global distribution of 100 major alien fungal and oomycete pathogens with substantial socio‐economic and environmental impacts and examine their taxonomy, ecological characteristics, temporal accumulation trajectories, regional hot‐ and coldspots of taxon richness and taxon flows between continents.LocationGlobal.TaxonAlien/cryptogenic fungi and fungus‐like oomycetes, pathogenic to plants or animals.MethodsTo identify over/underrepresented classes and phyla, we performed Chi2 tests of independence. To describe spatial patterns, we calculated the region‐wise richness and identified hot‐ and coldspots, defined as residuals after correcting taxon richness for region area and sampling effort via a quasi‐Poisson regression. We examined the relationship with environmental and socio‐economic drivers with a multiple linear regression and evaluated a potential island effect. Regional first records were pooled over 20‐year periods, and for global flows the links between the native range to the alien regions were mapped.ResultsPeronosporomycetes (Oomycota) were overrepresented among taxa and regional taxon richness was positively correlated with area and sampling effort. While no island effect was found, likely due to host limitations, hotspots were correlated with human modification of terrestrial land, per capita gross domestic product, temperate and tropical forest biomes, and orobiomes. Regional first records have increased steeply in recent decades. While Europe and Northern America were major recipients, about half of the taxa originate from Asia.Main ConclusionsWe highlight the putative importance of anthropogenic drivers, such as land use providing a conducive environment, contact opportunities and susceptible hosts, as well as economic wealth likely increasing colonisation pressure. While most taxa were associated with socio‐economic impacts, possibly partly due to a bias in research focus, about a third show substantial impacts to both socio‐economy and the environment, underscoring the importance of maintaining a wholescale perspective across natural and managed systems.

Qin, F., T. Xue, X. Zhang, X. Yang, J. Yu, S. R. Gadagkar, and S. Yu. 2023. Past climate cooling and orogenesis of the Hengduan Mountains have influenced the evolution of Impatiens sect. Impatiens (Balsaminaceae) in the Northern Hemisphere. BMC Plant Biology 23. https://doi.org/10.1186/s12870-023-04625-w

Background Impatiens sect. Impatiens is distributed across the Northern Hemisphere and has diversified considerably, particularly within the Hengduan Mountains (HDM) in southwest China. Yet, the infra-sectional phylogenetic relationships are not well resolved, largely due to limited taxon sampling and an insufficient number of molecular markers. The evolutionary history of its diversification is also poorly understood. In this study, plastome data and the most complete sampling to date were used to reconstruct a robust phylogenetic framework for this section. The phylogeny was then used to investigate its biogeographical history and diversification patterns, specifically with the aim of understanding the role played by the HDM and past climatic changes in its diversification. Results A stable phylogeny was reconstructed that strongly supported both the monophyly of the section and its division into seven major clades (Clades I-VII). Molecular dating and ancestral area reconstruction suggest that sect. Impatiens originated in the HDM and Southeast China around 11.76 Ma, after which different lineages dispersed to Northwest China, temperate Eurasia, and North America, mainly during the Pliocene and Pleistocene. An intercontinental dispersal event from East Asia to western North America may have occurred via the Bering Land Bridge or Aleutian Islands. The diversification rate was high during its early history, especially with the HDM, but gradually decreased over time both within and outside the HDM. Multiple linear regression analysis showed that the distribution pattern of species richness was strongly associated with elevation range, elevation, and mean annual temperature. Finally, ancestral niche analysis indicated that sect. Impatiens originated in a relatively cool, middle-elevation area. Conclusions We inferred the evolutionary history of sect. Impatiens based on a solid phylogenetic framework. The HDM was the primary source or pump of its diversity in the Northern Hemisphere. Orogeny and climate change may have also shaped its diversification rates, as a steady decrease in the diversification rate coincided with the uplift of the HDM and climate cooling. These findings provide insights into the distribution pattern of sect. Impatiens and other plants in the Northern Hemisphere.

Paquette, H. A., R. T. McMullin, and Y. F. Wiersma. 2023. The importance of taxonomy for determining species distribution: a case study using the disjunct lichen Brodoa oroarctica. Botany. https://doi.org/10.1139/cjb-2023-0096

Species-focused conservation requires a thorough understanding of species’ distributions. Delineating a species’ distribution requires taxonomic knowledge and adequate occurrence data. For plants and fungi, herbaria represent a valuable source of large-scale occurrence data. Advances in digital technology mean that data from many herbarium collections worldwide are now easily accessible. However, species concepts can change over time requiring herbarium records to be re-examined and databases updated, which does not always occur synchronously across all collections. Therefore, non-critical use of these data can promote inaccuracies in understanding species distributions. Taxonomic revisions are common in understudied organisms, such as lichens. Here, we illustrate how changing taxonomy and non-critical acceptance of online data affects our understanding of disjunct distributions, using the lichen Brodoa oroarctica (Krog) Goward as an example. Defining the distribution of the arctic lichen B. oroarctica is confounded by changing taxonomy and uncertainty of herbarium records that pre-date taxonomic revisions. We review the distribution of this species in the literature and in aggregate occurrence databases, and verify herbarium specimens that represent disjunct occurrences in eastern North America to present an updated account of its distribution and frequency in eastern North America. We show that knowledge of changing species taxonomy is essential to depicting accurate species distributions.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

Ortiz-Acosta, M. Á., J. Galindo-González, A. A. Castro-Luna, and C. Mota-Vargas. 2023. Potential distribution of marsupials (Didelphimorphia: Didelphidae) in Mexico under 2 climate change scenarios M. Vieira [ed.],. Journal of Mammalogy. https://doi.org/10.1093/jmammal/gyad101

Climate change is one of the main threats to biodiversity in the 21st century. However, the effects that it may have on different mammal species are unknown, making it difficult to implement conservation strategies. In this paper, we used species distribution models (SDM) to assess the effect of global climate change on the potential distribution of the 8 of the 9 marsupial species in Mexico, and analyzed their distribution in the current system of natural protected areas (NPAs). We used presence records for each species and bioclimatic variables from the present and the future (2050 and 2080) with 2 contrasting possible scenarios (representative concentration pathways RCP 4.5 and 8.5). We found that Tlacuatzin canescens would have the most stable potential range under any climate change scenario, while the remaining species (Caluromys derbianus, Chironectes minimus, Didelphis marsupialis, D. virginiana, Philander opossum, Marmosa mexicana, and Metachirus nudicaudatus) would undergo notable range losses in the future, though there would not only be losses—according to our SDMs, for all species there would be some range gain under the different climate scenarios, assuming the vegetation cover remained. The current system of NPAs in Mexico currently protects and under the 2 future scenarios would protect less than 20% of the potential range of marsupials, so a reevaluation of their areas beyond the NPAs is highly recommended for the long-term conservation of this group. Our results provide relevant information on the estimated effects of global climate change on marsupials, allowing us to design more effective methodologies for the protection of this portion of the mammalian fauna in Mexico.

Metreveli, V., H. Kreft, I. Akobia, Z. Janiashvili, Z. Nonashvili, L. Dzadzamia, Z. Javakhishvili, and A. Gavashelishvili. 2023. Potential Distribution and Suitable Habitat for Chestnut (Castanea sativa). Forests 14: 2076. https://doi.org/10.3390/f14102076

Chestnut, Castanea sativa Miller (Fagales: Fagaceae), is an ecologically and economically important tree species of the forest ecosystem in Southern Europe, North-Western Europe, Western Asia, North Africa, and the Caucasus. The distributional range of chestnut in Europe has been highly modified by humans since ancient times. Biotic and abiotic factors have dramatically changed its distribution. Historic anthropogenic range expansion makes it difficult to identify habitat requirements for natural stands of chestnut. In the Caucasus, natural stands of chestnut survived in glacial forest refugia and landscapes that have been difficult for humans to colonize. To identify the species reliable habitat requirements, we estimated the relationship between climatic variables and 620 occurrence locations of natural chestnut stands from the Caucasus and validated the model using GBIF data from outside the Caucasus. We found that our best model is reasonably accurate and the data from the Caucasus characterize chestnut stands throughout the species range well.