Ciência habilitada por dados de espécimes

Anon. 2023. Ecological Niche Modelling of an Industrially Important Mushroom - Ganoderma lucidum (Leys.) Karsten: A Machine Learning Global Appraisal. Journal of Scientific & Industrial Research 82. https://doi.org/10.56042/jsir.v82i12.1973

Species Distribution Modelling (SDM) involves utilizing observations of a given species and its surrounding environment to produce a sound approximation of the species' potential distribution. The intricate relationships between organisms and their surroundings, coupled with the profusion of data, have captured the attention of ecologists and statisticians alike. Consequently, they have directed their efforts towards exploring the potential of machine learning techniques. Our study employs an ensemble machine learning approach to simulate the global ecological niche modelling of Ganoderma lucidum fungus. This involves the utilization of various environmental predictors and the averaging of multiple algorithms to achieve a comprehensive analysis. 563 spatially thinned presence points of G. lucidum were projected with three bio-climatic time frames, namely current, 2050, and 2070, and four Representative Concentration Pathways (RCPs), namely 2.6, 4.5, 6.0, and 8.5, as well as non-climatic variables (surface soil features, land use, rooting depth and water storage capacity at rooting zone). We observed excellent model qualities as the Area Under the receiver operating Curve (AUC) approached 0.90. Random Forest was identified as the best individual algorithm, while the Maxent entropy was identified as the least effective for Ecological Niche Modelling (ENM) of G. lucidum. Globally, under the current bio-climatic and non-bioclimatic projection, optimum habitat for this fungus covers 12510876.3 km2 area while, maximum area (13248546.9 Sq. km.) under this habitat class with future projections was recorded with RCP of 8.5 in 2070. The primary determinants of its current global distribution were ecosystem rooting depth, water storage capacity, and precipitation seasonality. While, with two future bioclimatic time frames and RCPs, Isothermality was identified as the most influential predictor. Based on our assessment, it has been determined that this particular fungus is exhibiting a persistent pattern of proliferation across the regions of Europe, America, and certain areas of India. The present investigation sought to underscore the importance of discerning the native habitats of this species, taking into account both current and anticipated climatic shifts. This knowledge is essential for effectively coordinating the artificial cultivation and natural harvesting of G. lucidum, which is necessary to meet the ever-increasing industrial demands.

Silva-Valderrama, I., J.-R. Úrbez-Torres, and T. J. Davies. 2024. From host to host: The taxonomic and geographic expansion of Botryosphaeriaceae. Fungal Biology Reviews 48: 100352. https://doi.org/10.1016/j.fbr.2023.100352

Fungal pathogens are responsible for 30% of emerging infectious diseases (EIDs) in plants. The risk of a pathogen emerging on a new host is strongly tied to its host breadth; however, the determinants of host range are still poorly understood. Here, we explore the factors that shape host breadth of plant pathogens within Botryosphaeriaceae, a fungal family associated with several devastating diseases in economically important crops. While most host plants are associated with just one or a few fungal species, some hosts appear to be susceptible to infection by multiple fungi. However, the variation in the number of fungal taxa recorded across hosts is not easily explained by heritable plant traits. Nevertheless, we reveal strong evolutionary conservatism in host breadth, with most fungi infecting closely related host plants, but with some notable exceptions that seem to have escaped phylogenetic constraints on host range. Recent anthropogenic movement of plants, including widespread planting of crops, has provided new opportunities for pathogen spillover. We suggest that constraints to pathogen distributions will likely be further disrupted by climate change, and we may see future emergence events in regions where hosts are present but current climate is unfavorable.

Schertler, A., B. Lenzner, S. Dullinger, D. Moser, J. L. Bufford, L. Ghelardini, A. Santini, et al. 2023. Biogeography and global flows of 100 major alien fungal and fungus‐like oomycete pathogens. Journal of Biogeography. https://doi.org/10.1111/jbi.14755

AbstractAimSpreading infectious diseases associated with introduced pathogens can have devastating effects on native biota and human livelihoods. We analyse the global distribution of 100 major alien fungal and oomycete pathogens with substantial socio‐economic and environmental impacts and examine their taxonomy, ecological characteristics, temporal accumulation trajectories, regional hot‐ and coldspots of taxon richness and taxon flows between continents.LocationGlobal.TaxonAlien/cryptogenic fungi and fungus‐like oomycetes, pathogenic to plants or animals.MethodsTo identify over/underrepresented classes and phyla, we performed Chi2 tests of independence. To describe spatial patterns, we calculated the region‐wise richness and identified hot‐ and coldspots, defined as residuals after correcting taxon richness for region area and sampling effort via a quasi‐Poisson regression. We examined the relationship with environmental and socio‐economic drivers with a multiple linear regression and evaluated a potential island effect. Regional first records were pooled over 20‐year periods, and for global flows the links between the native range to the alien regions were mapped.ResultsPeronosporomycetes (Oomycota) were overrepresented among taxa and regional taxon richness was positively correlated with area and sampling effort. While no island effect was found, likely due to host limitations, hotspots were correlated with human modification of terrestrial land, per capita gross domestic product, temperate and tropical forest biomes, and orobiomes. Regional first records have increased steeply in recent decades. While Europe and Northern America were major recipients, about half of the taxa originate from Asia.Main ConclusionsWe highlight the putative importance of anthropogenic drivers, such as land use providing a conducive environment, contact opportunities and susceptible hosts, as well as economic wealth likely increasing colonisation pressure. While most taxa were associated with socio‐economic impacts, possibly partly due to a bias in research focus, about a third show substantial impacts to both socio‐economy and the environment, underscoring the importance of maintaining a wholescale perspective across natural and managed systems.

Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.07.003

Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.

Vieira Araújo, F. H., J. C. B. dos Santos, J. B. dos Santos, A. Ferreira da Silva, R. S. Ramos, R. Siqueira da Silva, and F. Shabani. 2023. Spread of Striga asiatica through suitable climatic conditions: Risk assessment in new areas producing Zea mays in South America. Journal of Arid Environments 210: 104924. https://doi.org/10.1016/j.jaridenv.2022.104924

Striga asiatica (dicot), an obligate hemiparasitic of monocots, is a potential threat to South America. Determining the ecological factors that explain the occurrence and predicting suitable areas for S. asiatica are fundamental for designing prevention strategies. We developed a Spatio-temporal dynamics model and evaluated Brazil's Weekly Growth Index (GIW) for S. asiatica. We analyzed four Brazilian regions (Central-West, South, Southeast, and Northeast) to verify the local seasonal variation of the species in climatic data. Our results indicated areas with favorable climatic suitability for the species in part of South America. Seasonal assessment models showed that high rainfall and the dry and cold periods common in tropical regions affect the GIW for S. asiatica. When we associate periods with maximum rainfall of 53 mm per week and temperature above 20 °C, the GIW approaches the optimal index for the regions evaluated, indicating the influence of soil moisture and air temperature. Our risk assessment indicated that the Southeast and Northeast are at the most significant risk of S. asiatica invasion. Projections for climate change between 2040–2059 showed expansions in areas suitable for S. asiatica compared to the current climate of South America.

Vieira Araújo, F. H., A. Ferreira da Silva, R. S. Ramos, S. R. Ferreira, J. Barbosa dos Santos, R. Siqueira da Silva, and F. Shabani. 2022. Modelling climate suitability for Striga asiatica, a potential invasive weed of cereal crops. Crop Protection 160: 106050. https://doi.org/10.1016/j.cropro.2022.106050

Striga asiatica (Lamiales: Orobanchaceae), a hemi-parasitic plant native to sub-Saharan Africa and tropical Asia, is particularly problematic to rice, corn, and sorghum cultivation in Africa. Striga asiatica produces a large number of small sized (<0.5 mm) seeds, thereby facilitating easy dispersion by commercial exchange of contaminated grains. The distribution of this species in Africa is regulated by climate, which is the main factor determining local suitability. Modelling is a useful tool to analyse climate suitability for species. This study aimed to determine the areas more vulnerable to S. asiatica invasion both in the present and under the projected climate change model using two methods: MaxEnt (as a correlative approach) and CLIMEX (as a semi-mechanistic approach). The MIROC-H Global Climate Model and the A2 and RCP 8.5 scenarios (the most pessimistic one) were used. Our projections indicated areas suitable for S. asiatica invasion in all continents under both present and projected climate change, with high suitability areas in South America, Africa, and Europe. We found agreement and disagreement between CLIMEX and MaxEnt outputs and the extent of disagreement on the increases in climate suitability by 2050 and 2100 in North America, Europe, and eastern, southern, and western Australia. This study provides a useful tool to design strategies aimed at preventing the introduction and establishment of S. asiatica in South America, with considerable agreement between CLIMEX and MaxEnt outputs.

Hidalgo-Triana, N., F. Casimiro-Soriguer Solanas, A. Solakis Tena, A. V. Pérez-Latorre, and J. García-Sánchez. 2022. Melinis repens (Willd.) Zizka subsp. repens (Poaceae) in Europe: distribution, ecology and potential invasion. Botany Letters 169: 390–399. https://doi.org/10.1080/23818107.2022.2080111

Melinis repens subsp. repens is an annual herb native to Africa and southwestern Asia. In 2008, this species was detected growing in road verges and showing a reduced occupancy area of 6 km2 in a natural area of the southern Iberian Peninsula in the province of Malaga (Andalusia, Spain). The rest of the existing European records of this species comes from the Czech Republic, the Italian Peninsula, and Great Britain and can be considered casual. Furthermore, this species has become naturalised in Sardinia. The aim of this work is to study the invasion status, habitats, potential impacts, invasive behaviour, and pathways of introduction of Melinis repens subsp. repens in the southern Iberian Peninsula (Spain) to contribute to the control of this species. This species was most probably introduced into Europe for ornamental, fodder, or slope stabilization purposes. Our field work revealed this species has become naturalised in several habitats of Malaga and Granada provinces (Andalusia) occupying an area of 263 km2 in 2021. It behaves as a pioneer species that colonizes disturbed road margins and occurs in the same habitat as Cenchrus setaceus. Melinis repens subsp. repens can become dominant in natural EUNIS habitats and can also occupy cultivated areas. Because of the high occupancy area detected, and because the species has been assigned to the European Union List of Invasive Alien Plants based on the EPPO prioritization process, this plant should be considered the object of a control programme and its use should be legally prohibited in Spain, and more largely in European Mediterranean areas.

To clarify biogeographic patterns of two mushroom species (Phallus merulinus and Geastrum courtecuissei) previously reported from Myanmar, sequence data of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA were retrieved from GenBank. The BLAST search and phylogenetic analyses of Phallus indicated that P. merulinus and P. atrovolvatus from wide areas, including Australia, Myanmar, Thailand, Brazil, and French Guiana, cannot be distinguished molecularly. The species was, therefore, considered widespread across tropical to subtropical regions. In contrast, G. courtecuissei from Myanmar was tightly clustered exclusively with G. courtecuissei from Central and South America, supporting the idea of its disjunct distribution between Southeast Asia (Myanmar) and Central-South Americas.

Colli-Silva, M., J. R. Pirani, and A. Zizka. 2022. Ecological niche models and point distribution data reveal a differential coverage of the cacao relatives (Malvaceae) in South American protected areas. Ecological Informatics 69: 101668. https://doi.org/10.1016/j.ecoinf.2022.101668

For many regions, such as in South America, it is unclear how well the existent protected areas network (PAs) covers different taxonomic groups and if there is a coverage bias of PAs towards certain biomes or species. Publicly available occurrence data along with ecological niche models might help to overcome this gap and to quantify the coverage of taxa by PAs ensuring an unbiased distribution of conservation effort. Here, we use an occurrence database of 271 species from the cacao family (Malvaceae) to address how South American PAs cover species with different distribution, abundance, and threat status. Furthermore, we compared the performance of online databases, expert knowledge, and modelled species distributions in estimating species coverage in PAs. We found 79 species from our survey (29% of the total) lack any record inside South American PAs and that 20 out of 23 species potentially threatened with extinction are not covered by PAs. The area covered by South American PAs was low across biomes, except for Amazonia, which had a relative high PA coverage, but little information on species distribution within PA available. Also, raw geo-referenced occurrence data were underestimating the number of species in PAs, and projections from ecological niche models were more prone to overestimating the number of species represented within PAs. We discuss that the protection of South American flora in heterogeneous environments demand for specific strategies tailored to particular biomes, including making new collections inside PAs in less collected areas, and the delimitation of more areas for protection in more known areas. Also, by presenting biasing scenarios of collection effort in a representative plant group, our results can benefit policy makers in conserving different spots of tropical environments highly biodiverse.

Ramírez, F., V. Sbragaglia, K. Soacha, M. Coll, and J. Piera. 2022. Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.802235

The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…