Ciência habilitada por dados de espécimes
Wei, Z., D. Jiao, C. A. Wehenkel, X. Wei, and X. Wang. 2024. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. Journal of Integrative Plant Biology. https://doi.org/10.1111/jipb.13760
Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth‐largest conifer genus, is a keystone component of the boreal and temperate dark‐coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high‐latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.
Rosenblad, K. C., and D. D. Ackerly. 2024. Climatic variation allows montane willows to escape an adaptive trade‐off. New Phytologist 244: 265–276. https://doi.org/10.1111/nph.20028
Adaptive responses to climate change, based on heritable variation in stress tolerance, may be important for plant population persistence. It is unclear which populations will mount the strongest future adaptive responses. It may be fruitful to identify populations that have escaped trade‐offs among performance traits, which can hinder adaptation. Barring strong genetic constraints, the extent of trade‐offs may depend on spatial relationships among climate variables shaping different traits.Here, we test for climate‐driven ecotypic variation and trade‐offs among drought and freezing sensitivity, and growth, for Lemmon's willow (Salix lemmonii) in a common garden study of 90 genotypes from 38 sites in the Sierra Nevada, USA.Salix lemmonii exhibits ecotypic variation in leaf turgor loss point, a measure of drought sensitivity, from −0.95 to −0.74 MPa along a gradient of spring snowpack. We also find variation in spring freezing sensitivity with minimum May temperature. However, we find no trade‐off, as the climatic gradients shaping these traits are spatially uncorrelated in our study region, despite being negatively correlated across the Sierra Nevada.Species may escape adaptive trade‐offs in geographic regions where climate variables are spatially decoupled. These regions may represent valuable reservoirs of heritable adaptive phenotypic variation.
Reichgelt, T. 2024. Linking the macroclimatic niche of native lithophytic ferns and their prevalence in urban environments. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16364
Premise Vertical surfaces in urban environments represent a potential expansion of niche space for lithophytic fern species. There are, however, few records of differential success rates of fern species in urban environments.MethodsThe occurrence rates of 16 lithophytic fern species native to the northeastern USA in 14 biomes, including four urban environments differentiated by percentage of impervious surfaces, were evaluated. In addition, the natural macroclimatic ranges of these species were analyzed to test whether significant differences existed in climatic tolerance between species that occur in urban environments and species that do not.ResultsThree species appear to preferentially occur in urban environments, two species may facultatively occur in urban environments, and the remaining 11 species preferentially occur in nondeveloped rural environments. The natural range of fern species that occur in urban environments had higher summer temperatures than the range of species that do not, whereas other macroclimatic variables, notably winter temperatures and precipitation, were less important or insignificant.ConclusionsVertical surfaces in urban environments may represent novel niche space for some native lithophytic fern species in northeastern USA. However, success in this environment depends, in part, on tolerance of the urban heat island effect, especially heating of impervious surfaces in summer.
Gan, Z., X. Fang, C. Yin, Y. Tian, L. Zhang, X. Zhong, G. Jiang, and A. Tao. 2024. Extraction, purification, structural characterization, and bioactivities of the genus Rhodiola L. polysaccharides: A review. International Journal of Biological Macromolecules 276: 133614. https://doi.org/10.1016/j.ijbiomac.2024.133614
The genus Rhodiola L., an integral part of traditional Chinese medicine and Tibetan medicine in China, exhibits a broad spectrum of applications. This genus contains key compounds such as ginsenosides, polysaccharides, and flavonoids, which possess anti-inflammatory, antioxidant, hypoglycaemic, immune-enhancing, and anti-hypoxic properties. As a vital raw material, Rhodiola L. contributes to twenty-four kinds of Chinese patent medicines and 481 health food products in China, finding extensive application in the health food sector. Recently, polysaccharides have emerged as a focal point in natural product research, with applications spanning the medicine, food, and materials sectors. Despite this, a comprehensive and systematic review of polysaccharides from the genus Rhodiola L. polysaccharides (TGRPs) is warranted. This study undertakes a systematic review of both domestic and international literature, assessing the research advancements and chemical functional values of polysaccharides derived from Rhodiola rosea. It involves the isolation, purification, and identification of a variety of homogeneous polysaccharides, followed by a detailed analysis of their chemical structures, pharmacological activities, and molecular mechanisms, structure-activity relationship (SAR) of TGRPs. The discussion includes the influence of molecular weight, monosaccharide composition, and glycosidic bonds on their biological activities, such as sulfation and carboxymethylation et al. Such analyses are crucial for deepening the understanding of Rhodiola rosea and for fostering the development and exploitation of TGRPs, offering a reference point for further investigations into TGRPs and their resource utilization.
Zhao, Y., G. A. O’Neill, N. C. Coops, and T. Wang. 2024. Predicting the site productivity of forest tree species using climate niche models. Forest Ecology and Management 562: 121936. https://doi.org/10.1016/j.foreco.2024.121936
Species occurrence-based climate niche models (CNMs) serve as valuable tools for predicting the future ranges of species’ suitable habitats, aiding the development of climate change adaptation strategies. However, these models do not address an essential aspect - productivity, which holds economic significance for timber production and ecological importance for carbon sequestration and ecosystem services. In this study, we investigated the potential to extend the CNMs to predict species productivity under various climate conditions. Lodgepole pine (Pinus contorta Dougl. ex Loud.) and Douglas-fir (Pseudotsuga menziesii Franco.) were selected as our model species due to their comprehensive range-wide occurrence data and measurement of site productivity. To achieve this, we compared and optimized the performance of four individual modeling algorithms (Random Forest (RF), Maxent, Generalized Boosted Models (GBM), and Generalized Additive Model (GAM)) in reflecting site productivity by evaluating the effect of spatial filtering, and the ratio of presence to absence (p/a ratio) observations. Additionally, we applied a binning process to capture the overarching trend of climatic effects while minimizing the impact of other factors. We observed consistency in optimal performance across both species when using the unfiltered data and a 1:1.5 p/a ratio, which could potentially be extended to other species. Among the modeling algorithms explored, we selected the ensemble model combining RF and Maxent as the final model to predict the range-wide site productivity for both species. The predicted range-wide site productivity was validated with an independent dataset for each species and yielded promising results (R2 above 0.7), affirming our model’s credibility. Our model introduced an innovative approach for predicting species productivity with high accuracy using only species occurrence data, and significantly advanced the application of CNMs. It provided crucial tools and insights for evaluating climate change's impact on productivity and holds a better potential for informed forest management and conservation decisions.
Gillespie, L. J., P. C. Sokoloff, G. A. Levin, J. Doubt, and R. T. McMullin. 2024. Vascular plant, bryophyte, and lichen biodiversity of Agguttinni Territorial Park, Baffin Island, Nunavut, Canada: an annotated species checklist of a new Arctic protected area. Check List 20: 279–443. https://doi.org/10.15560/20.2.279
Agguttinni Territorial Park is a large, newly established park on the east-central coast of Baffin Island in Nunavut, Canada. Previous knowledge of the plant and lichen biodiversity was limited and based mostly on collections made during the 1950 Baffin Island Expedition. We conducted a floristic inventory of the park in 2021 and re-examined previous collections. We recorded 141 species of vascular plants belonging to 25 families, 69 species of bryophytes in 27 families, and 93 species of lichens in 23 families. Most of the vascular plant and bryophyte species are new records for the park area, and some vascular plants, bryophytes, and lichens are newly reported for Baffin Island, Nunavut, or the Canadian Arctic or represent significant range extensions. Vascular plant species diversity varied greatly among localities, with inland valleys at the heads of fiords showing highest diversity and interior rocky barrens showing the lowest.
Rosas, M. R., R. A. Segovia, and P. C. Guerrero. 2023. Climatic Niche Dynamics of the Astereae Lineage and Haplopappus Species Distribution following Amphitropical Long-Distance Dispersal. Plants 12: 2721. https://doi.org/10.3390/plants12142721
The tribe Astereae (Asteraceae) displays an American Amphitropical Disjunction. To understand the eco-evolutionary dynamics associated with a long-distance dispersal event and subsequent colonization of extratropical South America, we compared the climatic and geographic distributions of South American species with their closest North American relatives, focusing on the diverse South American Astereae genus, Haplopappus. Phylogenetic analysis revealed that two South American genera are closely related to seven North American genera. The climatic niche overlap (D = 0.5) between South and North America exhibits high stability (0.89), low expansion (0.12), and very low unfilling (0.04). The distribution of the North American species predicted the climatic and geographic space occupied by the South American species. In central Chile, Haplopappus showed a non-random latitudinal gradient in species richness, with Mediterranean climate variables mainly explaining the variation. Altitudinal patterns indicated peak richness at 600 m, declining at lower and higher elevations. These findings support climatic niche conservatism in shaping Haplopappus species distribution and diversity. Two major endemism zones were identified in central Chile and the southern region, with a transitional zone between Mediterranean and Temperate macro-bioclimates. Our results indicate strong niche conservatism following long-distance dispersal and slight niche expansion due to unique climatic variables in each hemisphere.
González-Pérez, A., R. Álvarez-Esteban, Á. Penas, and S. del Río. 2023. Bioclimatic Characterisation of Specific Native Californian Pinales and Their Future Suitability under Climate Change. Plants 12: 1966. https://doi.org/10.3390/plants12101966
Rising temperatures and changes in precipitation patterns under climate change scenarios are accelerating the depletion of soil moisture and increasing the risk of drought, disrupting the conditions that many plant species need to survive. This study aims to establish the bioclimatic characterisation, both qualitative and quantitative, of ten native Californian Pinales for the period 1980–2019, and to determine their habitat suitability by 2050. To achieve this, an exhaustive search of the Gbif database for records of ten conifer taxa was carried out. To conduct the bioclimatic characterisation of the studied taxa, we worked with the monthly values of average temperature and precipitation for the period 1980–2019 from 177 meteorological stations. Linear regressions was performed in order to compile the future evolution of California’s climate. Suitable areas and optimal areas were defined at the present time (1980–2019) and its future projection (2050). We applied Boolean logic and, in this investigation, the Conditional Logic Operator (CON) was used to determine the possible species presence (one) or absence (zero) for each of the 15 variables analysed. In general, most of the conifers studied here will experience a reduction in their habitat range in California by the year 2050 due to climate change, as well as the displacement of species towards optimal areas. Furthermore, the results have highlighted the applicability of bioclimatology to future conditions under climate change. This will aid conservation managers in implementing strategic measures to ameliorate the detrimental impacts of climate change, thereby ensuring the ecological integrity and sustainability of the affected conifer species.
Sáenz-Ceja, J. E., and M. E. Mendoza. 2023. Priority areas for the conservation of the genus Abies Mill. (Pinaceae) in North America. Journal for Nature Conservation: 126407. https://doi.org/10.1016/j.jnc.2023.126407
Fir forests (Abies, Pinaceae) are dominant in temperate regions of North America; however, they have experienced high degradation rates that can threaten their long-term continuity. This study aimed to identify the priority areas for the conservation of the genus Abies in North America. First, we modeled the species distribution of the 17 native species through ecological niche modeling, considering 21 environmental variables. Then, we defined the priority areas through multi-criteria analysis, considering the species richness, geographic rareness, irreplaceability, habitat degradation, and risk extinction. We also built six scenarios, giving more priority to each criterion. Finally, we identified the proportion of the extent of the priority areas covered by protected areas. Elevation, precipitation seasonality, and winter precipitation influenced the distribution of most of the Abies species. When considering equal weights to each criterion, the priority areas summed up 6% of the total extent covered by the Abies species in North America. Most priority areas were located on the West Coast of the United States, the Eastern Sierra Madre, Southern Sierra Madre, Sierras of Chiapas and Central America, and the Trans-Mexican Volcanic Belt ecoregions. In these ecoregions, the Abies species are restricted to small areas facing high degradation levels. Only 16% of the area covered by the Abies species in North America is protected, mainly under restrictive schemes such as National Parks and Wilderness Areas. The priority areas identified could be the basis for establishing or enlarging protected areas. The preservation of the genus Abies could also maintain other ecological features and processes such as biodiversity, forest resources, and environmental services.
Huang, T., J. Chen, K. E. Hummer, L. A. Alice, W. Wang, Y. He, S. Yu, et al. 2023. Phylogeny of Rubus (Rosaceae): Integrating molecular and morphological evidence into an infrageneric revision. TAXON. https://doi.org/10.1002/tax.12885
Rubus (Rosaceae), one of the most complicated angiosperm genera, contains about 863 species, and is notorious for its taxonomic difficulty. The most recent (1910–1914) global taxonomic treatment of the genus was conducted by Focke, who defined 12 subgenera. Phylogenetic results over the past 25 years suggest that Focke's subdivisions of Rubus are not monophyletic, and large‐scale taxonomic revisions are necessary. Our objective was to provide a comprehensive phylogenetic analysis of the genus based on an integrative evidence approach. Morphological characters, obtained from our own investigation of living plants and examination of herbarium specimens are combined with chloroplast genomic data. Our dataset comprised 196 accessions representing 145 Rubus species (including cultivars and hybrids) and all of Focke's subgenera, including 60 endemic Chinese species. Maximum likelihood analyses inferred phylogenetic relationships. Our analyses concur with previous molecular studies, but with modifications. Our data strongly support the reclassification of several subgenera within Rubus. Our molecular analyses agree with others that only R. subg. Anoplobatus forms a monophyletic group. Other subgenera are para‐ or polyphyletic. We suggest a revised subgeneric framework to accommodate monophyletic groups. Character evolution is reconstructed, and diagnostic morphological characters for different clades are identified and discussed. Based on morphological and molecular evidence, we propose a new classification system with 10 subgenera: R. subg. Anoplobatus, R. subg. Batothamnus, R. subg. Chamaerubus, R. subg. Cylactis, R. subg. Dalibarda, R. subg. Idaeobatus, R. subg. Lineati, R. subg. Malachobatus, R. subg. Melanobatus, and R. subg. Rubus. The revised infrageneric nomenclature inferred from our analyses is provided along with synonymy and type citations. Our new taxonomic backbone is the first systematic and complete global revision of Rubus since Focke's treatment. It offers new insights into deep phylogenetic relationships of Rubus and has important theoretical and practical significance for the development and utilization of these important agronomic crops.