Ciência habilitada por dados de espécimes

Garcia-Cardenas, E. E., L. E. Angeles-Gonzalez, and G. Alcaraz. 2024. Hermit crabs of the genera Calcinus and Clibanarius show no evidence of competitive exclusion at a geographic scale. Hydrobiologia. https://doi.org/10.1007/s10750-024-05501-w

The fundamental ecological niche is determined by individuals’ ability to cope with abiotic conditions; however, biotic interactions (e.g., competition) can also influence species’ distribution ranges, reducing the fundamental niche to the realized niche. Several species of the genera Clibanarius and Calcinus overlap in their distributions. The agonistically dominant Calcinus species inhabits mostly lower intertidal levels, while Clibanarius is more abundant in the abiotically demanding upper strata. Additionally, evidence of microhabitat competitive exclusion shows that the superior competitor, Ca . californiensis , causes the vertical displacement of Cl . albidigitus . However, it is unknown whether competitive exclusion between species of these genera has influenced their distributions at the macroecological scale. We used ecological niche models to compare the distribution and the habitat suitability of species of these genera. We used databases of species occurrences and bioclimatic and geophysical variables to model and map the species’ niches. Species of the two hermit crab genera showed strong overlap in their habitat suitability. Calcinus and Clibanarius species occur in broad sympatry at the regional scale without regions of partial overlap that would indicate competitive exclusion. Therefore, competitive exclusion among species of these genera seems to act only on a microhabitat scale in the most dynamic shoreline areas.

Kopperud, B. T., S. Lidgard, and L. H. Liow. 2022. Enhancing georeferenced biodiversity inventories: automated information extraction from literature records reveal the gaps. PeerJ 10: e13921. https://doi.org/10.7717/peerj.13921

We use natural language processing (NLP) to retrieve location data for cheilostome bryozoan species (text-mined occurrences (TMO)) in an automated procedure. We compare these results with data combined from two major public databases (DB): the Ocean Biodiversity Information System (OBIS), and the Global Biodiversity Information Facility (GBIF). Using DB and TMO data separately and in combination, we present latitudinal species richness curves using standard estimators (Chao2 and the Jackknife) and range-through approaches. Our combined DB and TMO species richness curves quantitatively document a bimodal global latitudinal diversity gradient for extant cheilostomes for the first time, with peaks in the temperate zones. A total of 79% of the georeferenced species we retrieved from TMO (N = 1,408) and DB (N = 4,549) are non-overlapping. Despite clear indications that global location data compiled for cheilostomes should be improved with concerted effort, our study supports the view that many marine latitudinal species richness patterns deviate from the canonical latitudinal diversity gradient (LDG). Moreover, combining online biodiversity databases with automated information retrieval from the published literature is a promising avenue for expanding taxon-location datasets.

Bosso, L., S. Smeraldo, D. Russo, M. L. Chiusano, G. Bertorelle, K. Johannesson, R. K. Butlin, et al. 2022. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biological Invasions. https://doi.org/10.1007/s10530-022-02838-y

Understanding what determines range expansion or extinction is crucial to predict the success of biological invaders. We tackled this long-standing question from an unparalleled perspective using the failed expansions in Littorina saxatilis and investigated its present and past habitat suitability in Europe through Ecological Niche Modelling. This intertidal snail is a typically successful Atlantic colonizer and the earliest confirmed alien species in the Mediterranean Sea, where, however, it failed to thrive despite its high dispersal ability and adaptability. We explored the environmental constraints affecting its biogeography, identified potential glacial refugia in Europe that fuelled its post-glacial colonisations and tested whether the current gaps in its distribution are linked to local ecological features. Our results suggested that L. saxatilis is unlikely to be a glacial relict in the Mediterranean basin. Multiple Atlantic glacial refugia occurred in the Last Glacial Maximum, and abiotic environmental features such as salinity and water temperature have influenced the past and current distributions of this snail and limited its invasion of the Mediterranean Sea. The snail showed a significant overlap in geographic space and ecological niche with Carcinus maenas , the Atlantic predator, but distinct from Pachygrapsus marmoratus , the Mediterranean predator, further pointing to Atlantic-like habitat requirements for this species. Abiotic constrains during introduction rather than dispersal abilities have shaped the past and current range of L. saxatilis and help explaining why some invasions have not been successful. Our findings contribute to clarifying the processes constraining or facilitating shifts in species’ distributions and biological invasions.

Ramírez, F., V. Sbragaglia, K. Soacha, M. Coll, and J. Piera. 2022. Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.802235

The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…

Sharifian, S., E. Kamrani, and H. Saeedi. 2021. Insights toward the future potential distribution of mangrove crabs in the Persian Gulf and the Sea of Oman. Journal of Zoological Systematics and Evolutionary Research 59: 1620–1631. https://doi.org/10.1111/jzs.12532

Mangroves are an ideal habitat for brachyuran crabs because of nutritional and shelter support. Using maximum entropy (MaxEnt) modeling technique, we projected the potential global distributions of 10 dominant species of mangrove crabs from the Persian Gulf and the Sea of Oman under future climate c…

dos Santos, E. V., P. A. Martinez, G. Souza, and U. P. Jacobina. 2021. Genome size drives ecological breadth in Pomacentridae reef fishes. Journal of Experimental Marine Biology and Ecology 540: 151544. https://doi.org/10.1016/j.jembe.2021.151544

Genome size (GS) is known to vary widely among fishes. However, evolutionary drivers that shape this variation are largely unknown in Pomacentridae. GS information is available for several Pomacentridae species, which have adapted over evolutionary time mainly in reef environments. In the present st…

Sharifian, S., E. Kamrani, and H. Saeedi. 2020. Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. Journal of Thermal Biology 92: 102692. https://doi.org/10.1016/j.jtherbio.2020.102692

Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of m…