Ciência habilitada por dados de espécimes

Dantas, V. L., L. C. S. Oliveira, C. R. Marcati, and J. Sonsin‐Oliveira. 2024. Coordination of bark and wood traits underlies forest‐to‐savanna evolutionary transitions. Journal of Biogeography. https://doi.org/10.1111/jbi.14850

Aim To test the hypothesis that adaptive shifts leading to the assembly of tropical savannas involved coordination between bark and wood traits and to understand the underlying mechanisms.LocationTropical South America.TaxonAngiosperms (woody).MethodsWe compiled data on three bark traits (total, inner and outer relative bark thickness), wood density, maximum height, five secondary xylem traits and on species' habitat information (light environment, climate, soil and fire history) for Neotropical savanna, forest and generalist species (biome groups). We tested for pairwise and multivariate associations among traits across species and if biome group and habitat conditions explained species positions along the resulting strategy axes.ResultsTraits covaried along four different axes. The first axis was consistent with a trade‐off between fire (thick barks) and shade tolerance (low bark to diameter ratio, high vessel density) and contributed to differentiate the three biome groups according to the preference for shaded environments. Forest species also differed from savanna and generalist species in a separate axis by being more resource acquisitive. Maximum height and wood density did not strongly trade‐off with bark thickness, although maximum height was negatively covaried with relative outer bark thickness. Preference for shaded conditions was the main driver of variation in the two principal strategy axes, but temperature, fire and soil sand content also explained differences in plant stature between savanna and generalist species.Main ConclusionsAllocation to bark is constrained by trade‐offs with wood, opposing shade‐tolerant and acquisitive forest species to fire‐resistant and conservative savanna species. Rather than a single strategy axis, three axes are necessary to understand the functional differences among savanna, forest and generalist species. Because two of these axes are controlled by light availability, the associated traits tend to covary in space and time, but not across species.

Werchan, M., B. Werchan, P. Bogawski, F. Mousavi, M. Metz, and K.-C. Bergmann. 2024. An emerging aeroallergen in Europe: Tree-of-Heaven (Ailanthus altissima [Mill.] Swingle) inventory and pollen concentrations – Taking a metropolitan region in Germany as an example. Science of The Total Environment 930: 172519. https://doi.org/10.1016/j.scitotenv.2024.172519

Urban areas are often hotspots for the dissemination of non-native (invasive) plant species, some of which release (potentially) allergenic pollen. Given the high population density in cities, a considerable number of people can be regularly and potentially intensively exposed to the pollen from these plants. This study delves into the Tree-of-Heaven (Ailanthus altissima, [Mill.] Swingle), native to East Asia, which is known for its high invasiveness in temperate regions worldwide, particularly favoring urban colonization. This study explores the botanical and aerobiological dimensions of this species using the central European metropolitan region of Berlin, Germany, as a case study, and provides a comprehensive global overview of allergological insights.The number of Ailanthus trees decreased markedly from the center to the periphery of Berlin City, following a temperature gradient. The same spatial trend was mirrored by airborne Ailanthus pollen concentrations measured with volumetric spore traps (Hirst-type) at five sites using seven traps. Ailanthus pollen was most abundant around midday and in the afternoon, with concentrations tenfold higher at street level than at roof level. The Ailanthus flowering period in June and July coincided well with the pollen season. To the best of our knowledge this is the first study to investigate Ailanthus altissima pollen production. On average, 5539 pollen grains were found per anther. A literature review on the allergy relevance of Ailanthus altissima pollen indicates the high allergenic potential of pollen from this species.Considering the anticipated expansion of suitable habitats for Ailanthus owing to global warming and the allergological significance of its pollen, it is recommended to include Ailanthus pollen in routine pollen monitoring, particularly in areas colonized by this species. This comprehensive study provides new insights into a pollen taxon whose significance as an emerging aeroallergen should be factored into plant selection and greenspace management in all temperate regions.

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Ramírez-Barahona, S. 2024. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales R. Warnock, and M. Zelditch [eds.],. Evolution. https://doi.org/10.1093/evolut/qpae034

Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage’s biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth–death process and the dispersal–extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic–Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils’ phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.

Lizardo, V., F. Escobar, E. Martínez‐Meyer, and J. J. Morrone. 2024. Adaptive shifts in Phanaeini dung beetles of the Mexican plateau cenocron in the Mexican transition zone. Zoologica Scripta. https://doi.org/10.1111/zsc.12656

The Mexican Transition Zone is a biogeographically complex area where old and new lineages of Neotropical and Nearctic affinities overlap. Its biota was assembled by successive dispersal events of cenocrons, which are sets of taxa that dispersed during a given time interval from both North and South America and then diversified in the area. The Mexican Plateau cenocron, with Neotropical affinities, is found in temperate and dry climates in the Nearctic region. We hypothesised that it underwent an adaptive shift in environmental niche. We tested this hypothesis using a phylogenetic comparative framework, measuring phylogenetic signal and fitting to single optima macroevolutionary models, and an Ornstein‐Uhlenbeck macroevolutionary model with multiple optima. We used phylogenetic and distributional information of the tribe Phanaeini to assess whether there exists a distinction in conservatism between the earliest (Mexican Plateau) and most recent (Typical Neotropical) cenocrons within the Mexican Transition Zone (MTZ) as this tribe stands as a classic example of the dispersal and diversification patterns of cenocrons originating in the Neotropics. We identified different shifts in environmental requirements that match the niche description of the Mexican Plateau cenocron, suggesting that it was established through multiple adaptive shifts in the Mexican Transition Zone.

Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4

Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.

Prochazka, L. S., S. Alcantara, J. G. Rando, T. Vasconcelos, R. C. Pizzardo, and A. Nogueira. 2024. Resource availability and disturbance frequency shape evolution of plant life forms in Neotropical habitats. New Phytologist. https://doi.org/10.1111/nph.19601

Organisms use diverse strategies to thrive in varying habitats. While life history theory partly explains these relationships, the combined impact of resource availability and disturbance frequency on life form strategy evolution has received limited attention.We use Chamaecrista species, a legume plant lineage with a high diversity of plant life forms in the Neotropics, and employ ecological niche modeling and comparative phylogenetic methods to examine the correlated evolution of plant life forms and environmental niches.Chamaephytes and phanerophytes have optima in environments characterized by moderate water and nutrient availability coupled with infrequent fire disturbances. By contrast, annual plants thrive in environments with scarce water and nutrients, alongside frequent fire disturbances. Similarly, geophyte species also show increased resistance to frequent fire disturbances, although they thrive in resource‐rich environments.Our findings shed light on the evolution of plant strategies along environmental gradients, highlighting that annuals and geophytes respond differently to high incidences of fire disturbances, with one enduring it as seeds in a resource‐limited habitat and the other relying on reserves and root resprouting systems in resource‐abundant habitats. Furthermore, it deepens our understanding of how organisms evolve associated with their habitats, emphasizing a constraint posed by low‐resource and high‐disturbance environments.

Minghetti, E., P. M. Dellapé, M. Maestro, and S. I. Montemayor. 2024. Evaluating the climatic suitability of Engytatus passionarius Minghetti et al. (Heteroptera, Miridae) as a biological control agent of the invasive stinking passion flower Passiflora foetida L. in Australia through ecological niche models. Biological Control 191: 105461. https://doi.org/10.1016/j.biocontrol.2024.105461

Passiflora foetida is a climbing vine, native to the Neotropical Region that is causing major economic and ecological damage in Australia, where it is rapidly spreading. Traditional control options, such as cutting, manual uprooting, and herbicide applications are only effective for local management. Currently, the plant bug Engytatus passionarius is the most promising biological control agent. Specificity tests performed in its native range in Argentina suggest it is highly specific to the plant, and it has not been observed in the field associated with other plants. As climate determines the establishment of insects, knowing if the environmental conditions suit their requirements is key to introducing a species in a region. Also, an overlap between the climatic niches of species is an indicator of similar requirements. To explore the possibilities of a successful establishment of E. passionarius in Australia, ecological niche models (ENM) were built for the plant bug and for the vine and their overlap was measured. The ENM projected to Australia recognized suitable environmental conditions for the establishment of E. passionarius in several regions where P. foetida is present, both for current and future scenarios. Moreover, the niche of the plant bug is almost completely overlapped with that of the vine. All the aforementioned evidence seems to indicate that E. passionarius has a good chance to become an effective biological control agent of P. foetida.

Putra, A. R., K. A. Hodgins, and A. Fournier‐Level. 2023. Assessing the invasive potential of different source populations of ragweed (Ambrosia artemisiifolia L.) through genomically informed species distribution modelling. Evolutionary Applications. https://doi.org/10.1111/eva.13632

The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster‐specific ENMs and characterize within‐species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions.

Finegan, B., D. Delgado, A. L. Hernández Gordillo, N. Zamora Villalobos, R. Núñez Florez, F. Díaz Santos, and S. Vílchez Mendoza. 2024. Multi-dimensional temperature sensitivity of protected tropical mountain rain forests. Frontiers in Forests and Global Change 6. https://doi.org/10.3389/ffgc.2023.1214911

Introduction Tropical mountain rain forests (TMRF, natural forests at > 300 m asl) are globally important for biodiversity and ecosystem services and are believed to be highly vulnerable to climate change. But there are no specific approaches for rigorous assessment of their vulnerability at the landscape and local scales necessary for management for adaptation. We address the challenge of evaluating the ecological sensitivity to temperature of TMRF, applying a multidimensional approach in protected areas over a 440–2,950 m asl altitudinal gradient in Costa Rica, synthesizing results of a long-term research programme (2012-present). We evaluate the sensitivity to the current spatial temperature gradient of eleven ecosystem properties in three categories: forest composition and diversity, thermal characteristics of forest stands and forest structure and dynamics.MethodsData are from 29 to 32 plots of 50 m x 50 m (0.25 ha) distributed over the gradient, in which all trees, palms and tree ferns ≥ 10 dbh are identified to species and measured for recruitment, growth and mortality. An experimental study of leaf litter decomposition rates was carried out in twelve plots. Current and future (SSP 585, 2070) values of mean annual temperatures MAT were obtained from online climate surfaces. Thermal characteristics of forest stands were determined using MATs of species occurrences in GBIF and include a new index, the Community Thermal Capital Index (CTCI), calculated as CTI-MAT.ResultsWe classified degrees of sensitivity to temperature as very weak, weak, moderate or substantial. All eleven ecosystem properties are substantially sensitive, so changes in their values are expected under rising temperatures. Species density, the community temperature index CTI, tree recruitment and mortality rates and leaf litter decomposition rates are positively related to temperature, while the community weighted mean thermal niche breadth, the CTCI, net basal area increments, stand basal area and carbon in aboveground biomass are negatively related. Results point to zones of vulnerability in the protected areas.DiscussionIn montane forests, positive values of the CTCI–climate credit– robust basal area growth and very low mortality and leaf litter decomposition rates suggest healthy ecosystems and no risk of mountaintop extinction. Lowland forests may be vulnerable to degradation and biotic attrition, showing current basal area loss, high mortality and climate debts. National and local actors are participating in a process of adoption of the sensitivity analysis and recommendations regarding zones of vulnerability.