Ciência habilitada por dados de espécimes

Mathur, M., and P. Mathur. 2024. Habitat suitability of Opuntia ficus-indica (L.) MILL. (CACTACEAE): a comparative temporal evaluation using diverse bio-climatic earth system models and ensemble machine learning approach. Environmental Monitoring and Assessment 196.

A comprehensive evaluation of the habitat suitability across the India was conducted for the introduced species Opuntia ficus-indica . This assessment utilized a newly developed model called BioClimInd, takes into account five Earth System Models (ESMs). These ESMs consider two different emission scenarios known as Representative Concentration Pathways (RCP), specifically RCP 4.5 and RCP 8.5. Additionally, the assessment considered two future time frames: 2040–2079 (60) and 2060–2099 (80). Current study provided the threshold limit of different climatic variables in annual, quarter and monthly time slots like temperature annual range (26–30 °C), mean temperature of the driest quarter (25–28 °C); mean temperature of the coldest month (22–25 °C); minimum temperature of coldest month (13–17 °C); precipitation of the wettest month (250–500 mm); potential evapotranspiration Thronthwaite (1740–1800 mm). Predictive climatic habitat suitability posits that the introduction of this exotic species is deemed unsuitable in the Northern as well as the entirety of the cooler eastern areas of the country. The states of Rajasthan and Gujarat exhibit the highest degree of habitat suitability for this particular species. Niche hypervolumes and climatic variables affecting fundamental and realized niches were also assessed. This study proposes using multi-climatic exploration to evaluate habitats for introduced species to reduce modeling uncertainties.

Weiss, R. M., F. Zanetti, B. Alberghini, D. Puttick, M. A. Vankosky, A. Monti, and C. Eynck. 2024. Bioclimatic analysis of potential worldwide production of spring‐type camelina [Camelina sativa (L.) Crantz] seeded in the spring. GCB Bioenergy 16.

Camelina [Camelina sativa (L.) Crantz] is a Brassicaceae oilseed that is gaining interest worldwide as low‐maintenance crop for diverse biobased applications. One of the most important factors determining its productivity is climate. We conducted a bioclimate analysis in order to analyze the relationship between climatic factors and the productivity of spring‐type camelina seeded in the spring, and to identify regions of the world with potential for camelina in this scenario. Using the modelling tool CLIMEX, a bioclimatic model was developed for spring‐seeded spring‐type camelina to match distribution, reported seed yields and phenology records in North America. Distribution, yield, and phenology data from outside of North America were used as independent datasets for model validation and demonstrated that model projections agreed with published distribution records, reported spring‐seeded camelina yields, and closely predicted crop phenology in Europe, South America, and Asia. Sensitivity analysis, used to quantify the response of camelina to changes in precipitation and temperature, indicated that crop performance was more sensitive to moisture than temperature index parameters, suggesting that the yield potential of spring‐seeded camelina may be more strongly impacted by water‐limited conditions than by high temperatures. Incremental climate scenarios also revealed that spring‐seeded camelina production will exhibit yield shifts at the continental scale as temperature and precipitation deviate from current conditions. Yield data were compared with indices of climatic suitability to provide estimates of potential worldwide camelina productivity. This information was used to identify new areas where spring‐seeded camelina could be grown and areas that may permit expanded production, including eastern Europe, China, eastern Russia, Australia and New Zealand. Our model is the first to have taken a systematic approach to determine suitable regions for potential worldwide production of spring‐seeded camelina.

Novoa, A., H. Hirsch, M. L. Castillo, S. Canavan, L. González, D. M. Richardson, P. Pyšek, et al. 2023. Genetic and morphological insights into the Carpobrotus hybrid complex around the world. NeoBiota 89: 135–160.

The genus Carpobrotus N.E.Br. comprises between 12 and 25 species, most of which are native to South Africa. Some Carpobrotus species are considered among the most damaging invasive species in coastal dune systems worldwide. In their introduced areas, these species represent a serious threat to native species and significantly impact soil conditions and geochemical processes. Despite being well studied, the taxonomy of Carpobrotus remains problematic, as the genus comprises a complex of species that hybridize easily and are difficult to distinguish from each other. To explore the population genetic structure of invasive Carpobrotus species (i.e., C. acinaciformis and C. edulis) across a significant part of their native and non-native ranges, we sampled 40 populations across Argentina, Italy, New Zealand, Portugal, South Africa, Spain, and the USA. We developed taxon-specific microsatellite markers using a Next Generation Sequencing approach to analyze the population genetic structure and incidence of hybridization in native and non-native regions. We identified three genetically distinct clusters, which are present in both the native and non-native regions. Based on a set of selected morphological characteristics, we found no clear features to identify taxa morphologically. Our results suggest that the most probable sources of global introductions of Carpobrotus species are the Western Cape region of South Africa and the coastline of California. We suggest that management actions targeting Carpobrotus invasions globally should focus on preventing additional introductions from the east coast of South Africa, and on searching for prospective biocontrol agents in the Western Cape region of South Africa.

Putra, A. R., K. A. Hodgins, and A. Fournier‐Level. 2023. Assessing the invasive potential of different source populations of ragweed (Ambrosia artemisiifolia L.) through genomically informed species distribution modelling. Evolutionary Applications.

The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster‐specific ENMs and characterize within‐species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions.

Rocha, J., P. J. Nunes, A. Pinto, L. Fenina, A. L. Afonso, A. R. Seixas, R. Cruz, et al. 2024. Ecological adaptation of Australian Myrtaceae through the leaf waxes analysis: Corymbia citriodora, Eucalyptus gunnii, and Eucalyptus globulus. Flora 310: 152435.

Seeking to get insight into the close relationship between plant waxes and the climatic conditions of plants’ original biomes, the leaves of three Myrtaceae from the eastern Australian-Tasmanian region (Corymbia citriodora (Hook.) K.D.Hill & L.A.S.Johnson (lemon-scented gum), Eucalyptus gunnii Hook. (cider gum), and Eucalyptus globulus Labill. (blue gum)) were selected. The present study relied on the analysis of juvenile leaf samples of the three species collected at the Botanical Garden of the University of Trás-os-Montes e Alto Douro (Portugal) during the driest and warmest period of the year (July), to ensure the same environmental conditions as the Australian species from December to February, for cider gum and blue gum, and from June to September, for lemon-scented gum. Both surfaces of the leaves of the three Myrtaceae species exhibit superhydrophobic behavior. They are covered with wax tubules, but these are thicker and the surface is smoother in the case of cider gum. From the chemical standpoint, the leaf waxes of the three species revealed a prevalence of β-diketones and sterols over alcohols, alkanes, and esters. The relative ketone/sterol concentration ratio demonstrated an environmental dynamic variation with climate, i.e., with the ombrothermic regimes. The highest concentration of β-diketone and the lowest concentration of sterols was observed for species from dryer conditions (lemon-scented gum), whereas the reverse trend was found for species from wetter conditions (cider gum and blue gum).The present work strongly suggests that the chemical composition of leaf waxes, rather than wettability, seems to be directly correlated with environmental variability at the species’ natural site. The methodology proposed here opens exciting new prospects for the investigation of the environmental dynamics of terrestrial plants.

Özdemir, S. 2023. Testing the Effect of Resolution on Species Distribution Models Using Two Invasive Species. Polish Journal of Environmental Studies.

Species distribution models are the most useful tools that reveal the relationships of target species with environmental variables. The most frequently preferred environmental variables are bioclimatic parameters due to their ability to be interpolated into the future. Bioclimatic variables can be downloaded from various databases at different resolutions. The aim of the present study is to reveal the effect of resolution preference on species distribution models. Ambrosia artemisiifolia and Ailanthus altissima, two invasive species, were selected as target species. These species have large potential distributions. In addition, studies indicate that their distribution is increasing rapidly. Therefore, it poses a threat to both human health and biodiversity. In the present study, a significant difference was found between the predictive values obtained with different resolutions for both species. It was also observed that the model with the highest AUC values was obtained with bioclimatic variables that have 10 arc minutes resolution for both species. The AUC values showed that the models had excellent explanatory power. Finally, potential suitable areas covering almost all of Europe were identified for the two invasive species. It is thought that these species may pose a serious threat in terms of both biodiversity and human health if careful attention is not exercised in the planning.

Metreveli, V., H. Kreft, I. Akobia, Z. Janiashvili, Z. Nonashvili, L. Dzadzamia, Z. Javakhishvili, and A. Gavashelishvili. 2023. Potential Distribution and Suitable Habitat for Chestnut (Castanea sativa). Forests 14: 2076.

Chestnut, Castanea sativa Miller (Fagales: Fagaceae), is an ecologically and economically important tree species of the forest ecosystem in Southern Europe, North-Western Europe, Western Asia, North Africa, and the Caucasus. The distributional range of chestnut in Europe has been highly modified by humans since ancient times. Biotic and abiotic factors have dramatically changed its distribution. Historic anthropogenic range expansion makes it difficult to identify habitat requirements for natural stands of chestnut. In the Caucasus, natural stands of chestnut survived in glacial forest refugia and landscapes that have been difficult for humans to colonize. To identify the species reliable habitat requirements, we estimated the relationship between climatic variables and 620 occurrence locations of natural chestnut stands from the Caucasus and validated the model using GBIF data from outside the Caucasus. We found that our best model is reasonably accurate and the data from the Caucasus characterize chestnut stands throughout the species range well.

Yim, C., E. S. Bellis, V. L. DeLeo, D. Gamba, R. Muscarella, and J. R. Lasky. 2023. Climate biogeography of Arabidopsis thaliana: Linking distribution models and individual variation. Journal of Biogeography.

Aim Patterns of individual variation are key to testing hypotheses about the mechanisms underlying biogeographic patterns. If species distributions are determined by environmental constraints, then populations near range margins may have reduced performance and be adapted to harsher environments. Model organisms are potentially important systems for biogeographical studies, given the available range‐wide natural history collections, and the importance of providing biogeographical context to their genetic and phenotypic diversity.LocationGlobal.TaxonArabidopsis thaliana (‘Arabidopsis’).MethodsWe fit occurrence records to climate data, and then projected the distribution of Arabidopsis under last glacial maximum, current and future climates. We confronted model predictions with individual performance measured on 2194 herbarium specimens, and we asked whether predicted suitability was associated with life history and genomic variation measured on ~900 natural accessions.ResultsThe most important climate variables constraining the Arabidopsis distribution were winter cold in northern and high elevation regions and summer heat in southern regions. Herbarium specimens from regions with lower habitat suitability in both northern and southern regions were smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate‐associated factors. Climate anomalies partly explained interannual variation in herbarium specimen size, but these did not closely correspond to local limiting factors identified in the distribution model. Late‐flowering genotypes were absent from the lowest suitability regions, suggesting slower life histories are only viable closer to the centre of the realized niche. We identified glacial refugia farther north than previously recognized, as well as refugia concordant with previous population genetic findings. Lower latitude populations, known to be genetically distinct, are most threatened by future climate change. The recently colonized range of Arabidopsis was well‐predicted by our native‐range model applied to certain regions but not others, suggesting it has colonized novel climates.Main ConclusionsIntegration of distribution models with performance data from vast natural history collections is a route forward for testing biogeographical hypotheses about species distributions and their relationship with evolutionary fitness across large scales.

Mitka, J., A. Wróblewska, P. Boroń, S. Kucharzyk, and A. Stachurska-Swakoń. 2023. Perhaps there were northern refugia in LGM? The phylogeographic structure of the thermophilic tree Carpinus betulus in the Carpathian region. Science of The Total Environment 905: 167214.

Carpinus betulus L., the hornbeam, is a component of lowland and highland forests in Europe. By examining the postglacial migratory history of thermophilic tree species, the study aimed to unravel their putative glacial microrefugia in the Carpathian region. The present study points to the two distinct genetic AFLP groups of C. betulus in the Carpathian region that represent different genetic lineages based on Bayesian analysis. They differed in Nei's gene diversity index h, and the analysis of molecular variance AMOVA showed a percentage variation of the populations between the groups of 13.74 %. Principal coordinate analysis (PCoA) of 368 AFLP tree samples confirmed the presence of two genetic groups. Ninety-five populations underwent principal component analysis (PCA) to show the main correlations between genetic diversity indices and bioclimatic/climate variables (WorldClim and Carpatclim). The generalized logistic model (GLM) showed the significance of Nei's genetic index h in delimiting genetic groups. The results of population-genetic and multivariate analyses determined that the two genetic groups nowadays are spatially diffused and do not show a clear geographic pattern, pointing to a genetic melting pot. We found ecological links between genetic diversity and bioclimatic characteristics, especially the precipitation in the coldest quarter – Bio19. The refugial Maxent model indicates a significant contribution of the Bio7 variable (both linked with a continental type of climate) to the occurrence of the species during the LGM in Europe. We suggest the relict character of hornbeam populations in a specific climatic-terrain niche in the northern part of the Carpathian Basin.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069.

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.