Ciência habilitada por dados de espécimes

Allen, K. E., Tapondjou, W. P., Freeman, B., Cooper, J. C., Brown, R. M., & Peterson, A. T. (2021). Modelling potential Pleistocene habitat corridors between Afromontane forest regions. Biodiversity and Conservation, 30(8-9), 2361–2375. doi:10.1007/s10531-021-02198-4 https://doi.org/10.1007/s10531-021-02198-4

The unusually high floral and faunal similarity between the different regions of the Afromontane archipelago has been noted by biogeographers since the late 1800s. A possible explanation for this similarity is the spread of montane habitat into the intervening lowlands during the glacial periods of …

Kriticos, D. J., Ireland, K. B., Morin, L., Kumaran, N., Rafter, M. A., Ota, N., & Raghu, S. (2021). Integrating ecoclimatic niche modelling methods into classical biological control programmes. Biological Control, 160, 104667. doi:10.1016/j.biocontrol.2021.104667 https://doi.org/10.1016/j.biocontrol.2021.104667

Much of the success of a classical biological control programme hinges on identifying effective candidate agents, and once approved for release deploying them in the range invaded by the target organism at site-specific times of the year when they have the best chance of establishing. While suitable…

Bontrager, M., Usui, T., Lee‐Yaw, J. A., Anstett, D. N., Branch, H. A., Hargreaves, A. L., … Angert, A. L. (2021). Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution. doi:10.1111/evo.14231 https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

Mazijk, R., Cramer, M. D., & Verboom, G. A. (2021). Environmental heterogeneity explains contrasting plant species richness between the South African Cape and southwestern Australia. Journal of Biogeography. doi:10.1111/jbi.14118 https://doi.org/10.1111/jbi.14118

Aim: Given the importance of environmental heterogeneity as a driver of species richness through its effects on species diversification and coexistence, we asked whether the dramatic difference in species richness per unit area between two similar Mediterranean‐type biodiversity hotspots is explaine…

Rincón‐Barrado, M., Olsson, S., Villaverde, T., Moncalvillo, B., Pokorny, L., Forrest, A., … Sanmartín, I. (2021). Ecological and geological processes impacting speciation modes drive the formation of wide‐range disjunctions within tribe Putorieae (Rubiaceae). Journal of Systematics and Evolution. doi:10.1111/jse.12747 https://doi.org/10.1111/jse.12747

Wide‐range geographically discontinuous distributions have long intrigued scientists. We explore the role of ecology, geology, and dispersal in the formation of these large‐scale disjunctions, using the angiosperm tribe Putorieae (Rubiaceae) as a case study. From DNA sequences of nuclear ITS and six…

Iannella, M., D’Alessandro, P., De Simone, W., & Biondi, M. (2021). Habitat Specificity, Host Plants and Areas of Endemism for the Genera-Group Blepharida s.l. in the Afrotropical Region (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Insects, 12(4), 299. doi:10.3390/insects12040299 https://doi.org/10.3390/insects12040299

The genus Calotheca Heyden (Chrysomelidae) is mainly distributed in the eastern and southern parts of sub-Saharan Africa, with some extensions northward, while Blepharidina Bechyné occurs in the intertropical zone of Africa, with two subgenera, Blepharidina s. str. and Blepharidina(Afroblepharida) B…

Tribble, C. M., Martínez‐Gómez, J., Howard, C. C., Males, J., Sosa, V., Sessa, E. B., … Specht, C. D. (2021). Get the shovel: morphological and evolutionary complexities of belowground organs in geophytes. American Journal of Botany. doi:10.1002/ajb2.1623 https://doi.org/10.1002/ajb2.1623

Herbaceous plants collectively known as geophytes, which regrow from belowground buds, are distributed around the globe and throughout the land plant tree of life. The geophytic habit is an evolutionarily and ecologically important growth form in plants, permitting novel life history strategies, ena…

Briscoe Runquist, R. D., Lake, T. A., & Moeller, D. A. (2021). Improving predictions of range expansion for invasive species using joint species distribution models and surrogate co‐occurring species. Journal of Biogeography. doi:10.1111/jbi.14105 https://doi.org/10.1111/jbi.14105

Aims: Species distribution models (SDMs) are often used to forecast potential distributions of important invasive or rare species. However, situations where models could be the most valuable ecologically or economically, such as for predicting invasion risk, often pose the greatest challenges to SDM…

Saldaña‐López, A., Vilà, M., Lloret, F., Manuel Herrera, J., & González‐Moreno, P. (2021). Assembly of species’ climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 32(2). doi:10.1111/jvs.12989 https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Chauvel, B., Fried, G., Follak, S., Chapman, D., Kulakova, Y., Le Bourgeois, T., … Regnier, E. (2021). Monographs on invasive plants in Europe N° 5: Ambrosia trifida L. Botany Letters, 1–24. doi:10.1080/23818107.2021.1879674 https://doi.org/10.1080/23818107.2021.1879674

Ambrosia trifida L. (giant ragweed, Asteraceae) is native to the North American continent and was introduced into Europe and Asia at the end of the 19th century. In its native range, this tall annual species is common in riparian and ruderal habitats and is also a major weed in annual cropping syste…