Ciência habilitada por dados de espécimes

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

Werchan, M., B. Werchan, P. Bogawski, F. Mousavi, M. Metz, and K.-C. Bergmann. 2024. An emerging aeroallergen in Europe: Tree-of-Heaven (Ailanthus altissima [Mill.] Swingle) inventory and pollen concentrations – Taking a metropolitan region in Germany as an example. Science of The Total Environment 930: 172519. https://doi.org/10.1016/j.scitotenv.2024.172519

Urban areas are often hotspots for the dissemination of non-native (invasive) plant species, some of which release (potentially) allergenic pollen. Given the high population density in cities, a considerable number of people can be regularly and potentially intensively exposed to the pollen from these plants. This study delves into the Tree-of-Heaven (Ailanthus altissima, [Mill.] Swingle), native to East Asia, which is known for its high invasiveness in temperate regions worldwide, particularly favoring urban colonization. This study explores the botanical and aerobiological dimensions of this species using the central European metropolitan region of Berlin, Germany, as a case study, and provides a comprehensive global overview of allergological insights.The number of Ailanthus trees decreased markedly from the center to the periphery of Berlin City, following a temperature gradient. The same spatial trend was mirrored by airborne Ailanthus pollen concentrations measured with volumetric spore traps (Hirst-type) at five sites using seven traps. Ailanthus pollen was most abundant around midday and in the afternoon, with concentrations tenfold higher at street level than at roof level. The Ailanthus flowering period in June and July coincided well with the pollen season. To the best of our knowledge this is the first study to investigate Ailanthus altissima pollen production. On average, 5539 pollen grains were found per anther. A literature review on the allergy relevance of Ailanthus altissima pollen indicates the high allergenic potential of pollen from this species.Considering the anticipated expansion of suitable habitats for Ailanthus owing to global warming and the allergological significance of its pollen, it is recommended to include Ailanthus pollen in routine pollen monitoring, particularly in areas colonized by this species. This comprehensive study provides new insights into a pollen taxon whose significance as an emerging aeroallergen should be factored into plant selection and greenspace management in all temperate regions.

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Örücü, Ö. K., E. S. Arslan, E. Hoşgör, I. Kaymaz, and S. Gülcü. 2023. Potential distribution pattern of the Quercus brantii Lindl. and Quercus frainetto Ten. under the future climate conditions. European Journal of Forest Research. https://doi.org/10.1007/s10342-023-01636-y

This research aims to predict the potential distribution patterns of Brant's oak ( Quercus brantii Lindl.) and Hungarian oak ( Quercus frainetto Ten.) using three different climate models: HadGEM3-GC31-LL, MPI-ESM1-2-HR, and INM-CM5-0, all with a spatial resolution of 30 s (1 km 2 ). These models were developed for CMIP 6 and utilize scenarios of SSP2-4.5 and SSP5-8.5 for various time periods spanning from 2041 to 2100. To compare the current potential distribution area with those of the periods for different climate models, a change analysis was conducted. The study area covers distribution areas extending from the coastline of Portugal to the southwest of Iran. When comparing the medium–low and high forcing climate models based on the climate sensitivity, we observed that the distribution patterns of both species vary depending on the scenario and time period. Compared to the current distribution, suitable areas of Quercus brantii Lindl. expected to decrease as 84% (109,854 km 2 ) for HadGEM3-GC31-LL climate model and SSP5-8.5 scenario 2081–2100 time period. On the other hand, suitable areas of Quercus frainetto Ten. expected to increase as 59% (618,848 km 2 ) for INM-CM5-0 climate model and SSP5-8.5 during the time period 2081–2100. When it comes to change analysis result, HadGEM3-GC31-LL climate model and SSP5-8.5 scenario project the most significant alterations in the distribution areas of Quercus frainetto Ten. and Quercus brantii Lindl. during the time period 2081–2100, resulting in a loss of 763,046 km 2 and 220,759 km 2 , respectively. The results of the change analysis indicate that the areas marked as loss and gain for both species exhibit differences between the climate change scenarios and time periods. The findings of this research highlight that climate models offer a technological approach to adaptive forest management, enabling the development of strategies to mitigate issues related to climate change.

Metreveli, V., H. Kreft, I. Akobia, Z. Janiashvili, Z. Nonashvili, L. Dzadzamia, Z. Javakhishvili, and A. Gavashelishvili. 2023. Potential Distribution and Suitable Habitat for Chestnut (Castanea sativa). Forests 14: 2076. https://doi.org/10.3390/f14102076

Chestnut, Castanea sativa Miller (Fagales: Fagaceae), is an ecologically and economically important tree species of the forest ecosystem in Southern Europe, North-Western Europe, Western Asia, North Africa, and the Caucasus. The distributional range of chestnut in Europe has been highly modified by humans since ancient times. Biotic and abiotic factors have dramatically changed its distribution. Historic anthropogenic range expansion makes it difficult to identify habitat requirements for natural stands of chestnut. In the Caucasus, natural stands of chestnut survived in glacial forest refugia and landscapes that have been difficult for humans to colonize. To identify the species reliable habitat requirements, we estimated the relationship between climatic variables and 620 occurrence locations of natural chestnut stands from the Caucasus and validated the model using GBIF data from outside the Caucasus. We found that our best model is reasonably accurate and the data from the Caucasus characterize chestnut stands throughout the species range well.

Petitpierre, B., C. Arnold, L. N. Phelps, and A. Guisan. 2023. A tale of three vines: current and future threats to wild Eurasian grapevine by vineyards and invasive rootstocks. Diversity and Distributions. https://doi.org/10.1111/ddi.13780

AbstractAimEurasian grapevine (Vitis vinifera), one of the most important fruit crops worldwide, diverged from its wild and currently endangered relative (V. vinifera ssp. sylvestris) about 11,000 years ago. In the 19th century, detrimental phylloxera and disease outbreaks in Europe forced grapevine cultivation to use American Vitis species as rootstocks, which have now become naturalized in Europe and are starting to colonize similar habitats to the wild grapevine. Accordingly, wild grapevine now faces two additional threats: the expansion of vineyards and invasive rootstocks. Furthermore, climate change is expected to have significant impacts on the distribution of all grapevines in Europe. In this study, we quantified the distributional and bioclimatic overlap between grapewine's wild relative and the taxa associated with viticulture, under current and future climate.LocationEurope, North America.MethodsThe distributions of wild Eurasian grapevine, cultivated Eurasian grapevine and five American grapevine species used in rootstock breeding programs were linked to climate variables to model their bioclimatic niches. These ecological niche models were used to quantify the spatial and bioclimatic overlap between these seven Vitis taxa in Europe.ResultsNiche and spatial overlap is high between the wild, cultivated and rootstock grapevines, suggesting that existing conflicts between vineyards and wild grapevine conservation may be further complicated by naturalized rootstocks outcompeting the wild grapevine, especially under future scenarios of climate change. In the hottest scenario, only 76.1% of the current distribution of the Eurasian grapevine remains in suitable area.Main ConclusionsAs wild grapevine may ultimately provide a valuable gene pool for adapting viticulture to a changing world, these findings demonstrate the need for improved management of the wild grapevine and its natural habitat, to counteract the harmful effects of global change on the wild relatives of viticulture.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Tippery, N. P., N. E. Harms, M. F. Purcell, S. H. Hong, P. Häfliger, K. Killoy, A. L. Wolfe, and R. A. Thum. 2023. Assessing the genetic diversity of Nymphoides peltata in the native and adventive range using microsatellite markers. Biological Invasions. https://doi.org/10.1007/s10530-023-03151-y

Nymphoides peltata (yellow floating-heart), native to Eurasia, is an invasive plant in the USA, where it grows in relatively isolated but widespread populations. The species is capable of sexual reproduction by seed and asexual reproduction through fragmentation. Although N. peltata is recognized as a noxious weed, little is known about its geographic region of origin or its dispersal mechanisms and relative amount of genetic variation in its adventive range. We conducted a genetic analysis of N. peltata by studying 68 localities across the native range and 47 localities in the adventive range, using microsatellite markers to determine genetic variability within and among populations, and to infer regions in the native range from which invasive plants originated. A large number of sites in the USA were genetically identical to one another, and there were two predominant multilocus allele phenotypes that were distributed in the northern and southern latitudes, respectively. Additional USA sites were similar to one of the predominant genetic profiles, with greater genetic diversity in southern populations. The genetically identical sites are consistent with asexual spread, potentially via anthropogenic mechanisms. Plants across the USA range were observed to produce viable seeds, and some genetic variation could be explained by sexual reproduction. All USA plants were more similar to plants in Europe than they were to plants in Asia, indicating that the plants likely were introduced originally from Europe. The existence of two genetic clusters and their similarity to plants in different parts of Europe constitute evidence for at least two N. peltata introductions into the USA.

Graham, C. D. K., E. J. Forrestel, A. L. Schilmiller, A. T. Zemenick, and M. G. Weber. 2023. Evolutionary signatures of a trade-off in direct and indirect defenses across the wild grape genus Vitis. Evolution. https://doi.org/10.1093/evolut/qpad140

Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these pattern remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism, and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlate with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.

Shen, F., S. Xu, Q. Shen, C. Bi, and M. A. Lysak. 2023. The allotetraploid horseradish genome provides insights into subgenome diversification and formation of critical traits. Nature Communications 14. https://doi.org/10.1038/s41467-023-39800-y

Polyploidization can provide a wealth of genetic variation for adaptive evolution and speciation, but understanding the mechanisms of subgenome evolution as well as its dynamics and ultimate consequences remains elusive. Here, we report the telomere-to-telomere (T2T) gap-free reference genome of allotetraploid horseradish ( Armoracia rusticana ) sequenced using a comprehensive strategy. The (epi)genomic architecture and 3D chromatin structure of the A and B subgenomes differ significantly, suggesting that both the dynamics of the dominant long terminal repeat retrotransposons and DNA methylation have played critical roles in subgenome diversification. Investigation of the genetic basis of biosynthesis of glucosinolates (GSLs) and horseradish peroxidases reveals both the important role of polyploidization and subgenome differentiation in shaping the key traits. Continuous duplication and divergence of essential genes of GSL biosynthesis (e.g., FMO GS-OX , IGMT , and GH1 gene family) contribute to the broad GSL profile in horseradish. Overall, the T2T assembly of the allotetraploid horseradish genome expands our understanding of polyploid genome evolution and provides a fundamental genetic resource for breeding and genetic improvement of horseradish. Horseradish is a spicy root vegetable and it also produces horseradish peroxidase, an enzyme widely used in biochemistry applications. Here, the authors report its telomere-to-telomere reference genome, reveal subgenome diversification and the effect on the biosynthesis of glucosinolates and horseradish peroxidases.