Ciência habilitada por dados de espécimes

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Medina, A. M., & Almeida-Neto, M. (2020). Grinnelian and Eltonian niche conservatism of the European honeybee (Apis mellifera) in its exotic distribution. Sociobiology, 67(2), 239. doi:10.13102/sociobiology.v67i2.4901 https://doi.org/10.13102/sociobiology.v67i2.4901

The understanding of how niche-related traits change during species invasion have prompted what is now known as the niche conservatism principle. Most studies that have tested the niche conservatism principle have focused on the extent to which the species’ climatic niches remain stable in their exo…

Liu, X., Blackburn, T. M., Song, T., Wang, X., Huang, C., & Li, Y. (2020). Animal invaders threaten protected areas worldwide. Nature Communications, 11(1). doi:10.1038/s41467-020-16719-2 https://doi.org/10.1038/s41467-020-16719-2

Protected areas are the cornerstone of biodiversity conservation. However, alien species invasion is an increasing threat to biodiversity, and the extent to which protected areas worldwide are resistant to incursions of alien species remains poorly understood. Here, we investigate establishment by 8…

Zigler, K., Niemiller, M., Stephen, C., Ayala, B., Milne, M., Gladstone, N., … Cressler, A. (2020). Biodiversity from caves and other sub-terranean habitats of Georgia, USA. Journal of Cave and Karst Studies, 82(2), 125–167. doi:10.4311/2019lsc0125 https://doi.org/10.4311/2019LSC0125

We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemi…

Rotenberry, J. T., & Balasubramaniam, P. (2020). Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence. Ecography. doi:10.1111/ecog.04871 https://doi.org/10.1111/ecog.04871

Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: poi…

Prieto-Torres, D. A., Lira-Noriega, A., & Navarro-Sigüenza, A. G. (2020). Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forests. Perspectives in Ecology and Conservation. doi:10.1016/j.pecon.2020.01.002 https://doi.org/10.1016/j.pecon.2020.01.002

We assessed the effects of global climate change as a driver of spatio-temporal biodiversity patterns in bird assemblages associated to Neotropical seasonally dry forests (NSDF). For this, we estimated the geographic distribution of 719 bird species under current and future climate (2050 and 2070) p…

Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., & Cheung, W. W. L. (2020). Projecting global mariculture diversity under climate change. Global Change Biology. doi:10.1111/gcb.14974 https://doi.org/10.1111/gcb.14974

Previous studies have focused on changes in the geographical distribution of terrestrial biomes and species targeted by marine capture fisheries due to climate change impacts. Given mariculture’s substantial contribution to global seafood production and its growing significance in recent decades, it…

McCoshum, S. M., & Geber, M. A. (2020). Land Conversion for Solar Facilities and Urban Sprawl in Southwest Deserts Causes Different Amounts of Habitat Loss for Ashmeadiella Bees. Journal of the Kansas Entomological Society, 92(2), 468. doi:10.2317/0022-8567-92.2.468 https://doi.org/10.2317/0022-8567-92.2.468

Land conversion for human use poses one of the greatest threats to terrestrial ecosystems and causes habitat loss for a myriad of species. The development of large solar energy facilities and urban sprawl are converting wild lands in the Southwest deserts of the USA for human use and resulting in ha…

Shirey, V., Seppälä, S., Branco, V., & Cardoso, P. (2019). Current GBIF occurrence data demonstrates both promise and limitations for potential red listing of spiders. Biodiversity Data Journal, 7. doi:10.3897/bdj.7.e47369 https://doi.org/10.3897/bdj.7.e47369

Conservation assessments of hyperdiverse groups of organisms are often challenging and limited by the availability of occurrence data needed to calculate assessment metrics such as extent of occurrence (EOO). Spiders represent one such diverse group and have historically been assessed using primary …

Ezray, B. D., Wham, D. C., Hill, C. E., & Hines, H. M. (2019). Unsupervised machine learning reveals mimicry complexes in bumblebees occur along a perceptual continuum. Proceedings of the Royal Society B: Biological Sciences, 286(1910), 20191501. doi:10.1098/rspb.2019.1501 https://doi.org/10.1098/rspb.2019.1501

Müllerian mimicry theory states that frequency-dependent selection should favour geographical convergence of harmful species onto a shared colour pattern. As such, mimetic patterns are commonly circumscribed into discrete mimicry complexes, each containing a predominant phenotype. Outside a few exam…