Ciência habilitada por dados de espécimes

Liang, S., X. Zhang, and R. Wei. 2022. Ecological adaptation shaped the genetic structure of homoploid ferns against strong dispersal capacity. Molecular Ecology 31: 2679–2697. https://doi.org/10.1111/mec.16420

The formation of spatial genetic structure with the presence of extensive gene flow, an evolutionary force which is generally expected to eliminate population-specific variation and maintain genetic homogeneity, remains poorly understood. Homosporous ferns, which spread by spores through wind and possess long-distance dispersal capacity, provide an ideal system to investigate such a process. Here, using a homoploid fern lineage, the Athyrium sinense complex, we used reduced-representation genomic data to examine spatial genetic structure and explored potential driving forces including geographical distance, environment, climatic history and external dispersal constraints. Our findings showed a clear north-south divergence at the genetic, morphological and ecological levels between both sides of 35°N in East Asia. Fluctuant and heterogeneous climatic condition was demonstrated to play a crucial role during the formation of the divergence. Our results suggested that this lineage was able to migrate southward and colonize new habitat as a result of the Quaternary climatic fluctuation. Furthermore, the present genetic structure is attributed to adaptation to heterogeneous environments, especially temperature difference. In addition to ecological adaptation, we found clues showing that canopy density, wind direction as well as habitat continuity were all likely to constrain the effect of gene flow. These results demonstrated a diversification process without ploidy changes in ferns providing new insights for our present knowledge on ferns’ spatio-temporal evolutionary pattern. In particular, our study highlights the influence of environmental heterogeneity in driving genetic divergence against strong dispersal capacity.

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Lopes, A., L. O. Demarchi, A. C. Franco, A. B. Ferreira, C. S. Ferreira, F. Wittmann, I. N. Santiago, et al. 2021. Predicting the potential distribution of aquatic herbaceous plants in oligotrophic Central Amazonian wetland ecosystems. Acta Botanica Brasilica 35: 22–36. https://doi.org/10.1590/0102-33062020abb0188

Aquatic herbaceous plants are especially suitable for mapping environmental variability in wetlands, as they respond quickly to environmental gradients and are good indicators of habitat preference. We describe the composition of herbaceous species in two oligotrophic wetland ecosystems, floodplains…

Mairal, M., S. L. Chown, J. Shaw, D. Chala, J. H. Chau, C. Hui, J. M. Kalwij, et al. 2021. Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub‐Antarctic. Molecular Ecology 31: 1649–1665. https://doi.org/10.1111/mec.16045

The link between the successful establishment of alien species and propagule pressure is well-documented. Less known is how humans influence the post-introduction dynamics of invasive alien populations. The latter requires studying parallel invasions by the same species in habitats that are differen…

de Oliveira, M. H. V., B. M. Torke, and T. E. Almeida. 2021. An inventory of the ferns and lycophytes of the Lower Tapajós River Basin in the Brazilian Amazon reveals collecting biases, sampling gaps, and previously undocumented diversity. Brittonia 73: 459–480. https://doi.org/10.1007/s12228-021-09668-7

Ferns and lycophytes are an excellent group for conservation and species distribution studies because they are closely related to environmental changes. In this study, we analyzed collection gaps, sampling biases, richness distribution, and the species conservation effectiveness of protected areas i…

Bontrager, M., T. Usui, J. A. Lee‐Yaw, D. N. Anstett, H. A. Branch, A. L. Hargreaves, C. D. Muir, and A. L. Angert. 2021. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 75: 1316–1333. https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

Dellinger, A. S., R. Pérez‐Barrales, F. A. Michelangeli, D. S. Penneys, D. M. Fernández‐Fernández, and J. Schönenberger. 2021. Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytologist 231: 864–877. https://doi.org/10.1111/nph.17390

Evolutionary shifts from bee to vertebrate pollination are common in tropical mountains. Reduction in bee pollination efficiency under adverse montane weather conditions was proposed to drive these shifts. Although pollinator shifts are central for the evolution and diversification of angiosperms, w…

Saldaña‐López, A., M. Vilà, F. Lloret, J. Manuel Herrera, and P. González‐Moreno. 2021. Assembly of species’ climatic niches of coastal communities does not shift after invasion Z. Botta‐Dukát [ed.],. Journal of Vegetation Science 32. https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Cross, A. T., T. A. Krueger, P. M. Gonella, A. S. Robinson, and A. S. Fleischmann. 2020. Conservation of carnivorous plants in the age of extinction. Global Ecology and Conservation 24: e01272. https://doi.org/10.1016/j.gecco.2020.e01272

Carnivorous plants (CPs)—those possessing specific strategies to attract, capture and kill animal prey and obtain nutrition through the absorption of their biomass—are harbingers of anthropogenic degradation and destruction of ecosystems. CPs exhibit highly specialised and often very sensitive ecolo…