Ciência habilitada por dados de espécimes

Pang, S. E. H., Zeng, Y., De Alban, J. D. T., & Webb, E. L. (2022). Occurrence–habitat mismatching and niche truncation when modelling distributions affected by anthropogenic range contractions. Diversity and Distributions. Portico. https://doi.org/10.1111/ddi.13544 https://doi.org/10.1111/ddi.13544

Aims Human-induced pressures such as deforestation cause anthropogenic range contractions (ARCs). Such contractions present dynamic distributions that may engender data misrepresentations within species distribution models. The temporal bias of occurrence data—where occurrences represent distributions before (past bias) or after (recent bias) ARCs—underpins these data misrepresentations. Occurrence–habitat mismatching results when occurrences sampled before contractions are modelled with contemporary anthropogenic variables; niche truncation results when occurrences sampled after contractions are modelled without anthropogenic variables. Our understanding of their independent and interactive effects on model performance remains incomplete but is vital for developing good modelling protocols. Through a virtual ecologist approach, we demonstrate how these data misrepresentations manifest and investigate their effects on model performance. Location Virtual Southeast Asia. Methods Using 100 virtual species, we simulated ARCs with 100-year land-use data and generated temporally biased (past and recent) occurrence datasets. We modelled datasets with and without a contemporary land-use variable (conventional modelling protocols) and with a temporally dynamic land-use variable. We evaluated each model's ability to predict historical and contemporary distributions. Results Greater ARC resulted in greater occurrence–habitat mismatching for datasets with past bias and greater niche truncation for datasets with recent bias. Occurrence–habitat mismatching prevented models with the contemporary land-use variable from predicting anthropogenic-related absences, causing overpredictions of contemporary distributions. Although niche truncation caused underpredictions of historical distributions (environmentally suitable habitats), incorporating the contemporary land-use variable resolved these underpredictions, even when mismatching occurred. Models with the temporally dynamic land-use variable consistently outperformed models without. Main conclusions We showed how these data misrepresentations can degrade model performance, undermining their use for empirical research and conservation science. Given the ubiquity of ARCs, these data misrepresentations are likely inherent to most datasets. Therefore, we present a three-step strategy for handling data misrepresentations: maximize the temporal range of anthropogenic predictors, exclude mismatched occurrences and test for residual data misrepresentations.

Li, L., Xu, X., Qian, H., Huang, X., Liu, P., Landis, J. B., Fu, Q., Sun, L., Wang, H., Sun, H., & Deng, T. (2022). Elevational patterns of phylogenetic structure of angiosperms in a biodiversity hotspot in eastern Himalaya. Diversity and Distributions. Portico. https://doi.org/10.1111/ddi.13513 https://doi.org/10.1111/ddi.13513

Aims The tropical niche conservatism (TNC) hypothesis and the out of the tropics (OTT) hypothesis propose mechanisms generating patterns of species diversity across warm-to-cold thermal gradients at large spatial scales. These two hypotheses both integrate ecological and biogeography-related evoluti…

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885 https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Whitman, M., Beaman, R. S., Repin, R., Kitayama, K., Aiba, S., & Russo, S. E. (2021). Edaphic specialization and vegetation zones define elevational range‐sizes for Mt Kinabalu regional flora. Ecography. doi:10.1111/ecog.05873 https://doi.org/10.1111/ecog.05873

Identifying physical and ecological boundaries that limit where species can occur is important for predicting how those species will respond to global change. The island of Borneo encompasses a wide range of habitats that support some of the highest richness on Earth, making it an ideal location for…

Diao, Y., Wang, J., Yang, F., Wu, W., Zhou, J., & Wu, R. (2021). Identifying optimized on-the-ground priority areas for species conservation in a global biodiversity hotspot. Journal of Environmental Management, 290, 112630. doi:10.1016/j.jenvman.2021.112630 https://doi.org/10.1016/j.jenvman.2021.112630

Threatened species are inadequately represented within protected areas (PAs) across the globe. Species conservation planning may be improved by using public species-occurrence databases, but empirical evidence is limited of how that may be accomplished at local scales. We used the Three Parallel Riv…

Ebersbach, J., Tkach, N., Röser, M., & Favre, A. (2020). The Role of Hybridisation in the Making of the Species-Rich Arctic-Alpine Genus Saxifraga (Saxifragaceae). Diversity, 12(11), 440. doi:10.3390/d12110440 https://doi.org/10.3390/d12110440

Evolutionary processes fuelling rapid species diversification are not yet fully understood, although their major contribution to overall patterns of plant biodiversity is well established. Hybridisation is among the least understood of these processes, despite its multifaceted role in speciation pro…

Pelletier, T. A., Carstens, B. C., Tank, D. C., Sullivan, J., & Espíndola, A. (2018). Predicting plant conservation priorities on a global scale. Proceedings of the National Academy of Sciences, 115(51), 13027–13032. doi:10.1073/pnas.1804098115 https://doi.org/10.1073/pnas.1804098115

The conservation status of most plant species is currently unknown, despite the fundamental role of plants in ecosystem health. To facilitate the costly process of conservation assessment, we developed a predictive protocol using a machine-learning approach to predict conservation status of over 150…

Joyce, E., Thiele, K., Slik, F., & Crayn, D. (2020). Checklist of the vascular flora of the Sunda-Sahul Convergence Zone. Biodiversity Data Journal, 8. doi:10.3897/bdj.8.e51094 https://doi.org/10.3897/bdj.8.e51094

Background The Sunda-Sahul Convergence Zone, defined here as the area comprising Australia, New Guinea, and Southeast Asia (Indonesia to Myanmar), straddles the Sunda and Sahul continental shelves and is one of the most biogeographically famous and important regions in the world. Floristically, it i…

Holzmeyer, L., Hartig, A.-K., Franke, K., Brandt, W., Muellner-Riehl, A. N., Wessjohann, L. A., & Schnitzler, J. (2020). Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proceedings of the National Academy of Sciences, 201915277. doi:10.1073/pnas.1915277117 https://doi.org/10.1073/pnas.1915277117

Antibiotic resistance and viral diseases are rising around the world and are becoming major threats to global health, food security, and development. One measure that has been suggested to mitigate this crisis is the development of new antibiotics. Here, we provide a comprehensive evaluation of the …

Asase, A., Sainge, M. N., Radji, R. A., Ugbogu, O. A., & Peterson, A. T. (2020). A new model for efficient, need‐driven progress in generating primary biodiversity information resources. Applications in Plant Sciences, 8(1). doi:10.1002/aps3.11318 https://doi.org/10.1002/aps3.11318

Premise: The field of biodiversity informatics has developed rapidly in recent years, with broad availability of large‐scale information resources. However, online biodiversity information is biased spatially as a result of slow and uneven capture and digitization of existing data resources. The Wes…