Ciência habilitada por dados de espécimes
Quitete Portela, R. de C., L. Tourinho, T. Viana dos Santos, and M. M. Vale. 2023. Juçara palm ecological interactions threatened by climate and land‐cover changes. Biotropica. https://doi.org/10.1111/btp.13257
Ongoing climate change has caused well‐documented displacements of species' geographic distribution to newly climatically suitable areas. Ecological niche models (ENM) are widely used to project such climate‐induced changes but typically ignore species' interspecific interactions that might facilitate or prevent its establishment in new areas. Here, we projected the change in the distribution of Juçara Palm (Euterpe edulis Mart., Arecaceae), a neotropical threatened palm, taking into consideration its ecological interactions. We run ENMs of E. edulis, plus its known seed dispersers (15 bird species) and predators (19 birds and mammals) under current and future climatic conditions. Additionally, for E. edulis, we removed deforested areas from the model. When considering only climate, climate change has a positive impact on E. edulis, with a predicted westward expansion and a modest southward contraction, with a 26% net gain in distribution by 2060. When removing deforested areas, however, climate change harms E. edulis, with a 66% predicted net distribution loss. Within the palm's distribution in this more realistic model, there is also a predicted reduction in the richness of its dispersers and predators. We conclude that the possible benefits of climate change to E. edulis' distribution are overshadowed by widespread habitat loss, and that global change is likely to disrupt some of its ecological interactions. The outcome of the interplay between the negative impact of the loss of dispersers, and the benefit of the loss of predators, is unclear, but the large contraction of E. edulis' range predicted here foresees a dim future for the species.
Montana, K. O., V. Ramírez-Castañeda, and R. D. Tarvin. 2023. Are Pacific Chorus Frogs (Pseudacris regilla) Resistant to Tetrodotoxin (TTX)? Characterizing Potential TTX Exposure and Resistance in an Ecological Associate of Pacific Newts (Taricha). Journal of Herpetology 57. https://doi.org/10.1670/22-002
Animals that frequently encounter toxins often develop mechanisms of toxin resistance over evolutionary time. Both predators that consume toxic prey and organisms in physical contact with a toxin in their environment may experience natural selection for resistance. Based on observations that Pacific Chorus Frogs (Pseudacris regilla) sometimes eat and mistakenly amplect tetrodotoxin (TTX)-defended Taricha newts, we predicted that P. regilla may possess TTX resistance. We compared amino acid sequences of domain IV of the muscle voltage-gated sodium channel gene SCN4A (NaV1.4) in populations of P. regilla that are sympatric and allopatric with Taricha. We identified a single substitution in NaV1.4 of P. regilla at a conserved site in the pore loop where TTX binds. Although the role of this site in TTX resistance has not been functionally assessed, both allopatric and sympatric P. regilla had this substitution, along with several other reptiles and amphibians, suggesting that it may be unrelated to TTX exposure from Taricha. Thus, there is no conclusive evidence that P. regilla possesses TTX resistance encoded by amino acid substitutions in this domain. California occurrence data from the last 50 yr indicate that Taricha activity peaks in January while the activity of P. regilla peaks in April, with times where the species may come into contact. However, P. regilla may not be exposed to levels of TTX from Taricha high enough to select for mutations in NaV1.4. Other unidentified mechanisms of TTX resistance could be present in P. regilla and other species sympatric with toxic newts.
Vázquez-Rueda, E., A. P. Cuervo-Robayo, and J. Ayala-Berdon. 2023. Forest dependency could be more important than dispersal capacity for habitat connectivity of four species of insectivorous bats inhabiting a highly anthropized region in central Mexico. Mammal Research. https://doi.org/10.1007/s13364-023-00707-0
The maintenance, restoration, and improvement of habitat structure are critical for biodiversity conservation. Under this context, studies assessing habitat connectivity become essential, especially those focused on anthropized regions holding high species richness. We calculated the habitat connectivity of four species of insectivorous bats with different dispersal capacity and habitat preferences in a highly anthropized region in central Mexico, Idionycteris phyllotis and Myotis thysanodes , with a high dispersal capacity and forest-dependency, and Eptesicus fuscus with a low dispersal capacity, and Tadarida brasiliensis with a high dispersal capacity, as the more tolerant bat species to anthropogenic disturbance. We developed niche-based species distribution models to identify suitable habitat patches for each species. We then assessed habitat connectivity and the importance of suitable habitat patches for maintaining connectivity using a graph theory approach. Our results showed that forest dependency was most important than dispersal capacity for connectivity. We also found that the Iztaccíhuatl-Popocatépetl mountain, a National Park comprising 4.2% of natural vegetation in the study area, was the most critical patch for maintaining connectivity for most of the study species. Our study demonstrates the importance of conserving the remnants of natural vegetation for maintaining habitat connectivity within a fragmented landscape and demonstrates the importance of conserving protected areas as well as other remnants of vegetation for the maintenance of habitat connectivity within a fragmented landscape.
Cruz, J. A., J. A. Velasco, J. Arroyo-Cabrales, and E. Johnson. 2023. Paleoclimatic Reconstruction Based on the Late Pleistocene San Josecito Cave Stratum 720 Fauna Using Fossil Mammals, Reptiles, and Birds. Diversity 15: 881. https://doi.org/10.3390/d15070881
Advances in technology have equipped paleobiologists with new analytical tools to assess the fossil record. The functional traits of vertebrates have been used to infer paleoenvironmental conditions. In Quaternary deposits, birds are the second-most-studied group after mammals. They are considered a poor paleoambiental proxy because their high vagility and phenotypic plasticity allow them to respond more effectively to climate change. Investigating multiple groups is important, but it is not often attempted. Biogeographical and climatic niche information concerning small mammals, reptiles, and birds have been used to infer the paleoclimatic conditions present during the Late Pleistocene at San Josecito Cave (~28,000 14C years BP), Mexico. Warmer and dryer conditions are inferred with respect to the present. The use of all of the groups of small vertebrates is recommended because they represent an assemblage of species that have gone through a series of environmental filters in the past. Individually, different vertebrate groups provide different paleoclimatic information. Birds are a good proxy for inferring paleoprecipitation but not paleotemperature. Together, reptiles and small mammals are a good proxy for inferring paleoprecipitation and paleotemperature, but reptiles alone are a bad proxy, and mammals alone are a good proxy for inferring paleotemperature and precipitation. The current paleoclimatic results coupled with those of a previous vegetation structure analysis indicate the presence of non-analog paleoenvironmental conditions during the Late Pleistocene in the San Josecito Cave area. This situation would explain the presence of a disharmonious fauna and the extinction of several taxa when these conditions later disappeared and do not reappear again.
Fell, H. G., M. Jones, S. Atkinson, N. C. Stenseth, and A. C. Algar. 2023. The role of reservoir species in mediating plague’s dynamic response to climate. Royal Society Open Science 10. https://doi.org/10.1098/rsos.230021
The distribution and transmission of Yersinia pestis , the bacterial agent of plague, responds dynamically to climate, both within wildlife reservoirs and human populations. The exact mechanisms mediating plague's response to climate are still poorly understood, particularly across large environmentally heterogeneous regions encompassing several reservoir species. A heterogeneous response to precipitation was observed in plague intensity across northern and southern China during the Third Pandemic. This has been attributed to the response of reservoir species in each region. We use environmental niche modelling and hindcasting methods to test the response of a broad range of reservoir species to precipitation. We find little support for the hypothesis that the response of reservoir species to precipitation mediated the impact of precipitation on plague intensity. We instead observed that precipitation variables were of limited importance in defining species niches and rarely showed the expected response to precipitation across northern and southern China. These findings do not suggest that precipitation–reservoir species dynamics never influence plague intensity but that instead, the response of reservoir species to precipitation across a single biome cannot be assumed and that limited numbers of reservoir species may have a disproportional impact upon plague intensity.
Dobson, R., A. J. Challinor, R. A. Cheke, S. Jennings, S. G. Willis, and M. Dallimer. 2023. dynamicSDM : An R package for species geographical distribution and abundance modelling at high spatiotemporal resolution. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210x.14101
Species distribution models (SDM) are widely applied to understand changing species geographical distribution and abundance patterns. However, existing SDM tools are inherently static and inadequate for modelling species distributions that are driven by dynamic environmental conditions.dynamicSDM provides novel tools that explicitly consider the temporal dimension at key SDM stages, including functions for: (a) Cleaning and filtering species occurrence records by spatial and temporal qualities; (b) Generating pseudo‐absence records through space and time; (c) Extracting spatiotemporally buffered explanatory variables; (d) Fitting SDMs whilst accounting for temporal biases and autocorrelation and (e) Projecting intra‐ and inter‐ annual geographical distributions and abundances at high spatiotemporal resolution.Package functions have been designed to be: flexible for targeting specific study species; compatible with other SDM tools; and, by utilising Google Earth Engine and Google Drive, to have low computing power and storage needs. We illustrate dynamicSDM functions with an example of a nomadic bird in southern Africa, the red‐billed quelea Quelea quelea.As dynamicSDM functions are flexible and easily applied, we suggest that these tools could be readily applied to other taxa and systems globally.
Cosentino, F., E. C. J. Seamark, V. Van Cakenberghe, and L. Maiorano. 2023. Not only climate: The importance of biotic interactions in shaping species distributions at macro scales. Ecology and Evolution 13. https://doi.org/10.1002/ece3.9855
Abiotic factors are usually considered key drivers of species distribution at macro scales, while biotic interactions are mostly used at local scales. A few studies have explored the role of biotic interactions at macro scales, but all considered a limited number of species and obligate interactions. We examine the role of biotic interactions in large‐scale SDMs by testing two main hypotheses: (1) biotic factors in SDMs can have an important role at continental scale; (2) the inclusion of biotic factors in large‐scale SDMs is important also for generalist species. We used a maximum entropy algorithm to model the distribution of 177 bat species in Africa calibrating two SDMs for each species: one considering only abiotic variables (noBIO‐SDMs) and the other (BIO‐SDMs) including also biotic variables (trophic resource richness). We focused the interpretation of our results on variable importance and response curves. For each species, we also compared the potential distribution measuring the percentage of change between the two models in each pixel of the study area. All models gave AUC >0.7, with values on average higher in BIO‐SDMs compared to noBIO‐SDMs. Trophic resources showed an importance overall higher level than all abiotic predictors in most of the species (~68%), including generalist species. Response curves were highly interpretable in all models, confirming the ecological reliability of our models. Model comparison between the two models showed a change in potential distribution for more than 80% of the species, particularly in tropical forests and shrublands. Our results highlight the importance of considering biotic interactions in SDMs at macro scales. We demonstrated that a generic biotic proxy can be important for modeling species distribution when species‐specific data are not available, but we envision that a multi‐scale analysis combined with a better knowledge of the species might provide a better understanding of the role of biotic interactions.
Higino, G. T., F. Banville, G. Dansereau, N. R. Forero Muñoz, F. Windsor, and T. Poisot. 2023. Mismatch between IUCN range maps and species interactions data illustrated using the Serengeti food web. PeerJ 11: e14620. https://doi.org/10.7717/peerj.14620
Background Range maps are a useful tool to describe the spatial distribution of species. However, they need to be used with caution, as they essentially represent a rough approximation of a species’ suitable habitats. When stacked together, the resulting communities in each grid cell may not always be realistic, especially when species interactions are taken into account. Here we show the extent of the mismatch between range maps, provided by the International Union for Conservation of Nature (IUCN), and species interactions data. More precisely, we show that local networks built from those stacked range maps often yield unrealistic communities, where species of higher trophic levels are completely disconnected from primary producers. Methodology We used the well-described Serengeti food web of mammals and plants as our case study, and identify areas of data mismatch within predators’ range maps by taking into account food web structure. We then used occurrence data from the Global Biodiversity Information Facility (GBIF) to investigate where data is most lacking. Results We found that most predator ranges comprised large areas without any overlapping distribution of their prey. However, many of these areas contained GBIF occurrences of the predator. Conclusions Our results suggest that the mismatch between both data sources could be due either to the lack of information about ecological interactions or the geographical occurrence of prey. We finally discuss general guidelines to help identify defective data among distributions and interactions data, and we recommend this method as a valuable way to assess whether the occurrence data that are being used, even if incomplete, are ecologically accurate.
Ecke, F., B. A. Han, B. Hörnfeldt, H. Khalil, M. Magnusson, N. J. Singh, and R. S. Ostfeld. 2022. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nature Communications 13. https://doi.org/10.1038/s41467-022-35273-7
Population fluctuations are widespread across the animal kingdom, especially in the order Rodentia, which includes many globally important reservoir species for zoonotic pathogens. The implications of these fluctuations for zoonotic spillover remain poorly understood. Here, we report a global empirical analysis of data describing the linkages between habitat use, population fluctuations and zoonotic reservoir status in rodents. Our quantitative synthesis is based on data collated from papers and databases. We show that the magnitude of population fluctuations combined with species’ synanthropy and degree of human exploitation together distinguish most rodent reservoirs at a global scale, a result that was consistent across all pathogen types and pathogen transmission modes. Our spatial analyses identified hotspots of high transmission risk, including regions where reservoir species dominate the rodent community. Beyond rodents, these generalities inform our understanding of how natural and anthropogenic factors interact to increase the risk of zoonotic spillover in a rapidly changing world. Many rodent species are known as hosts of zoonotic pathogens, but the ecological conditions that trigger spillover are not well-understood. Here, the authors show that population fluctuations and association with human-dominated habitats explain the zoonotic reservoir status of rodents globally.
Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation. https://doi.org/10.1007/s10531-022-02497-4
Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.